
Data Mining
for Systems
Biology

Hiroshi Mamitsuka Editor

Methods and Protocols
Second Edition

Methods in
Molecular Biology 1807

M E T H O D S I N M O L E C U L A R B I O L O G Y

Series Editor
John M. Walker

School of Life and Medical Sciences
University of Hertfordshire

Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651

Data Mining for Systems Biology

Methods and Protocols

Second Edition

Edited by

Hiroshi Mamitsuka
Bioinformatics Center, Kyoto University, Uji, Kyoto, Japan; Department of Computer Science,

Aalto University, Espoo, Finland

Editor
Hiroshi Mamitsuka
Bioinformatics Center
Kyoto University
Uji, Kyoto, Japan

Department of Computer Science
Aalto University
Espoo, Finland

ISSN 1064-3745 ISSN 1940-6029 (electronic)
Methods in Molecular Biology
ISBN 978-1-4939-8560-9 ISBN 978-1-4939-8561-6 (eBook)
https://doi.org/10.1007/978-1-4939-8561-6

Library of Congress Control Number: 2018948727

© Springer Science+Business Media, LLC, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
express or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Humana Press imprint is published by the registered company Springer Science+Business Media, LLC part of
Springer Nature.
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.

https://doi.org/10.1007/978-1-4939-8561-6

Preface

Five years have passed since the first edition of Data Mining for Systems Biology: Methods and
Protocols. In these years, we have witnessed the acceleration and diversity of the development
of data mining (or, more generally, data-driven) approaches for life sciences. The first
edition showed numerous data mining works for various parts of the “central dogma” of
molecular biology. This principle continues, whereas some portions are more focused on
new fields within or out of the central dogma that have emerged as applications. These new
directions can be summarized in the following two categories: (1) genomics, particularly
metagenomics and epigenomics, to deepen the knowledge of genes and genomes, i.e., the
“origin” of the central dogma, and (2) metabolism (and metabolome) and also relevant
medicine-oriented subjects, i.e., the “future” ahead the central dogma. These two focuses
are inevitably revealed in the seventeen chapters in the volume. That is, the first nine
chapters are more related with the above first point, i.e. genomics, and the rest of the
chapters are rather on the other side, i.e. metabolism.

Metagenomics is an emerging research field in biology, closely relevant to lots of aspects
of our life. Tools for metagenomics would be highly helpful for understanding the structure
of, for example, the microbiome currently detectable everywhere. Mäklin, Corander, and
Honkela (Chapter 1) show a powerful probabilistic method and software for estimating
the relative abundance of species or strains in mixed samples with information by short-
read high-throughput sequencing. Vervier, Mahé, and Vert (Chapter 2) present a scalable
machine learning implementation based on nucleotide motifs for sequence classification
task in metagenomics. The current sequence data is massive, and definitely scalability is
key to analyzing those data. Lund, Tan, and Baumbach (Chapter 3) present, focusing on
16 s ribosomal RNA genes, an interactive web tool for exploring and analyzing prokaryotic
distributions by integrating various metagenomics databases.

Epigenomics and chemical modification are an attention-paid topic in current molecu-
lar biology. Äijö, Bonneau, and Lähdesmäki (Chapter 4) describe a generative probabilistic
model of integrative experiment analysis for multiple genomic measurements, focusing on
cytosine methylation. Frisch, Gøttcke, Röttger, Tan, and Baumbach (Chapter 5) present
an easy-to-use Java tool for the analysis of DNA methylation from EWAS data through a
graphical user interface. Perna, Canakoglu, Pinoli, Ceri, and Wong (Chapter 6) present
a web server implementing a robust, statistical method to infer physically interacting
transcription factors by integrating and managing heterogeneous, large genomic datasets,
such as those from ChIP-seq experiments.

Indeed, the interaction of two or more biological units, such as genes, transcription
factors, and single nucleotide polymorphisms (SNPs), is clearly important in biology, while
possible combinations are huge, making discovery of significant cases very hard. Terada
and Tsuda (Chapter 7) provide comprehensive instructions of their software for thoroughly
and efficiently detecting statistically significant combinatorial effects, such as transcriptional
regulation discovery and interactions among multiple SNPs. Takahashi, duVerle, Yotsukura,
Takigawa, and Mamitsuka (Chapter 8) present a tool for enumerating interactions of genes
as biclusters thoroughly and further generating a network of interacting genes, where each
network node corresponds to a set of genes, which can be linked to functional annotations.

v

http://dx.doi.org/10.1007/978-1-4939-8561-6_1
http://dx.doi.org/10.1007/978-1-4939-8561-6_2
http://dx.doi.org/10.1007/978-1-4939-8561-6_3
http://dx.doi.org/10.1007/978-1-4939-8561-6_4
http://dx.doi.org/10.1007/978-1-4939-8561-6_5
http://dx.doi.org/10.1007/978-1-4939-8561-6_6
http://dx.doi.org/10.1007/978-1-4939-8561-6_7
http://dx.doi.org/10.1007/978-1-4939-8561-6_8

vi Preface

Ding, Wei, and Kihara (Chapter 9) show a web server for visualizing and quantifying
the functional annotations of gene ontology (GO) to make GO term annotation more
biologically interpretable.

Genes can be functioning in a number of ways, while an important aspect of gene
functions is revealed through the metabolic network (or metabolome) interacting with
other biological molecules, mainly chemical compounds (including specific types such
as glycans), which can be drugs for network disorder. Aoki-Kinoshita (Chapter 10)
presents a procedure to discover glycan profiles through multiple tree alignment over
glycans. Bhadra and Rousu (Chapter 11) discuss a new methodology for metabolism
analysis by combining two main and complementary approaches, principal component
analysis (PCA) and stoichiometric flux analysis, through an elegant regularized optimization
framework. Halloran (Chapter 12) describes the Dynamic Bayesian network for Rapid
Identification of Peptide (DRIP) toolkit, which methodologically improves the current,
static alignment strategy in a dynamic alignment manner, for identifying the peptide
responsible for producing each observed spectrum. Yamanishi (Chapter 13) introduces
regular methodological protocols for deriving recent methods of sparse modeling for
analyzing drug-target interaction networks. Deng, Yuan, Mamitsuka, and Zhu (Chapter 14)
present a web service which combines two main approaches for predicting drug-target
interactions, i.e., feature-based and similarity-based, by using a machine learning technique,
Learning to Rank.

Disorders in cellular networks could cause various diseases, raising numerous medicine-
related research problems with various types of data, such as medical literature, ontologies,
networks, and pathways, to be tackled by data mining. Peng, Mamitsuka, and Zhu
(Chapter 15) discuss the recent progress of indexing medical documents by Learning to
Rank, which allows us to solve the two intrinsic problems of medical text mining: (1) only
around 10 keywords for each document, out of totally about 28,000, and (2) also given
information being just a word set (bag-of-words) for each document. Ata, Fang, Wu, Li,
and Xiao (Chapter 16) present a method, based on metagraphs, generated by combining
protein-protein interactions with keywords for proteins, particularly for building classifiers
to predict genes highly related with diseases. Kanehisa (Chapter 17) shows the knowledge
accumulated in the database, Kyoto Encyclopedia of Genes and Genomes (KEGG), and
also the usage of web tools in KEGG, taking inferring antimicrobial resistance (AMR) as an
example. The focused part of the database, KEGG Pathogen, is linked to other various parts
of KEGG, such as genome sequences, high-throughput data, pathways, and ontologies.
Interestingly, covering a wide variety of data in this chapter leads us back to the first main
part of this book, i.e., genomics.

I expect this book to be of interest to all researchers of biology and relevant fields,
such as medical, pharmaceutical, and agricultural sciences, as well as to the scientists
and engineers who are (or are interested in) developing data-driven techniques, such as
databases, data sciences, data mining, visualization systems, and machine learning (or more
generally artificial intelligence) that now are central to the paradigm-altering discoveries
being made with higher frequency.

Uji, Kyoto, Japan / Espoo, Finland Hiroshi Mamitsuka

http://dx.doi.org/10.1007/978-1-4939-8561-6_9
http://dx.doi.org/10.1007/978-1-4939-8561-6_10
http://dx.doi.org/10.1007/978-1-4939-8561-6_11
http://dx.doi.org/10.1007/978-1-4939-8561-6_12
http://dx.doi.org/10.1007/978-1-4939-8561-6_13
http://dx.doi.org/10.1007/978-1-4939-8561-6_14
http://dx.doi.org/10.1007/978-1-4939-8561-6_15
http://dx.doi.org/10.1007/978-1-4939-8561-6_16
http://dx.doi.org/10.1007/978-1-4939-8561-6_17

Contents

Preface . v
Contributors . ix

1 Identifying Bacterial Strains from Sequencing Data . 1
Tommi Mäklin, Jukka Corander, and Antti Honkela

2 MetaVW: Large-Scale Machine Learning for Metagenomics Sequence
Classification . 9
Kévin Vervier, Pierre Mahé, and Jean-Philippe Vert

3 Online Interactive Microbial Classification and Geospatial Distributional
Analysis Using BioAtlas . 21
Jesper Lund, Qihua Tan, and Jan Baumbach

4 Generative Models for Quantification of DNA Modifications . 37
Tarmo Äijö, Richard Bonneau, and Harri Lähdesmäki

5 DiMmer: Discovery of Differentially Methylated Regions in
Epigenome-Wide Association Study (EWAS) Data . 51
Tobias Frisch, Jonatan Gøttcke, Richard Röttger, Qihua Tan, and Jan
Baumbach

6 Implementing a Transcription Factor Interaction Prediction System Using
the GenoMetric Query Language. 63
Stefano Perna, Arif Canakoglu, Pietro Pinoli, Stefano Ceri, and Limsoon
Wong

7 Multiple Testing Tool to Detect Combinatorial Effects in Biology. 83
Aika Terada and Koji Tsuda

8 SiBIC: A Tool for Generating a Network of Biclusters Captured by
Maximal Frequent Itemset Mining . 95
Kei-ichiro Takahashi, David A. duVerle, Sohiya Yotsukura, Ichigaku
Takigawa, and Hiroshi Mamitsuka

9 Computing and Visualizing Gene Function Similarity and Coherence
with NaviGO .. 113
Ziyun Ding, Qing Wei, and Daisuke Kihara

10 Analyzing Glycan-Binding Profiles Using Weighted Multiple
Alignment of Trees . 131
Kiyoko F. Aoki-Kinoshita

11 Analysis of Fluxomic Experiments with Principal Metabolic
Flux Mode Analysis . 141
Sahely Bhadra and Juho Rousu

12 Analyzing Tandem Mass Spectra Using the DRIP Toolkit: Training,
Searching, and Post-Processing . 163
John T. Halloran

vii

viii Contents

13 Sparse Modeling to Analyze Drug–Target Interaction Networks. 181
Yoshihiro Yamanishi

14 DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank 195
Jieyao Deng, Qingjun Yuan, Hiroshi Mamitsuka, and Shanfeng Zhu

15 MeSHLabeler and DeepMeSH: Recent Progress in Large-Scale
MeSH Indexing . 203
Shengwen Peng, Hiroshi Mamitsuka, and Shanfeng Zhu

16 Disease Gene Classification with Metagraph Representations . 211
Sezin Kircali Ata, Yuan Fang, Min Wu, Xiao-Li Li, and Xiaokui Xiao

17 Inferring Antimicrobial Resistance from Pathogen Genomes in KEGG.. 225
Minoru Kanehisa

Index . 241

Contributors

TARMO ÄIJÖ • Center for Computational Biology, Flatiron Institute, New York, NY, USA
KIYOKO F. AOKI-KINOSHITA • Faculty of Science and Engineering, Soka University,

Tokyo, Japan
SEZIN KIRCALI ATA • School of Computer Science and Engineering, Nanyang Technologi-

cal University, Singapore, Singapore
JAN BAUMBACH • Department of Mathematics and Computer Science, University of South-

ern Denmark, Odense, Denmark
SAHELY BHADRA • Indian Institute of Technology, Palakkad, India
RICHARD BONNEAU • Center for Computational Biology, Flatiron Institute, New York,

NY, USA; Department of Biology, Center for Genomics and Systems Biology, New York
University, New York, NY, USA; Courant Institute of Mathematical Sciences, New York
University, New York, NY, USA

ARIF CANAKOGLU • DEIB, Politecnico di Milano, Milano, Italy
STEFANO CERI • DEIB, Politecnico di Milano, Milano, Italy
JUKKA CORANDER • Helsinki Institute for Information Technology (HIIT), Department

of Mathematics and Statistics, University of Helsinki, Helsinki, Finland; Department of
Biostatistics, University of Oslo, Oslo, Norway

JIEYAO DENG • School of Computer Science, Fudan University, Shanghai, China; Shanghai
Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China

ZIYUN DING • Department of Biological Science, Purdue University, West Lafayette, IN,
USA

DAVID A. DUVERLE • Department of Computational Biology and Medical Sciences, Grad-
uate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan

YUAN FANG • School of Information Systems, Singapore Management University, Singapore,
Singapore

TOBIAS FRISCH • Department of Mathematics and Computer Science, University of South-
ern Denmark, Odense, Denmark

JONATAN GØTTCKE • Department of Mathematics and Computer Science, University of
Southern Denmark, Odense, Denmark

JOHN T. HALLORAN • Department of Public Health Sciences, University of California,
Davis, CA, USA

ANTTI HONKELA • Helsinki Institute for Information Technology (HIIT), Department of
Mathematics and Statistics, University of Helsinki, Helsinki, Finland; Department of
Public Health, University of Helsinki, Helsinki, Finland

MINORU KANEHISA • Institute for Chemical Research, Kyoto University, Uji, Japan
DAISUKE KIHARA • Department of Biological Science, Purdue University, West Lafayette,

IN, USA; Department of Computer Science, Purdue University, West Lafayette, IN, USA
HARRI LÄHDESMÄKI • Department of Computer Science, Aalto University School of Science,

Aalto, Finland
XIAO-LI LI • Data Analytics Department, Institute for Infocomm Research, Singapore,

Singapore

ix

x Contributors

JESPER LUND • Department of Mathematics and Computer Science, University of Southern
Denmark, Odense, Denmark

PIERRE MAHÉ • Bioinformatics Research Department, BioMérieux, Marcy-l’Étoile, France
TOMMI MÄKLIN • Helsinki Institute for Information Technology (HIIT), Department of

Mathematics and Statistics, University of Helsinki, Helsinki, Finland
HIROSHI MAMITSUKA • Bioinformatics Center, Institute for Chemical Research, Kyoto

University, Uji, Japan; Department of Computer Science, Aalto University, Espoo, Finland
SHENGWEN PENG • School of Computer Science, Fudan University, Shanghai, China;

Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai,
China

STEFANO PERNA • DEIB, Politecnico di Milano, Milano, Italy
PIETRO PINOLI • DEIB, Politecnico di Milano, Milano, Italy
RICHARD RÖTTGER • Department of Mathematics and Computer Science, University of

Southern Denmark, Odense, Denmark
JUHO ROUSU • Helsinki Institute for Information Technology (HIIT), Department of

Computer Science, Aalto University, Espoo, Finland
KEI-ICHIRO TAKAHASHI • Bioinformatics Center, Institute for Chemical Research, Kyoto

University, Uji, Japan
ICHIGAKU TAKIGAWA • Division of Computer Science and Information Technology, Gradu-

ate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido,
Japan

QIHUA TAN • Department of Mathematics and Computer Science, University of Southern
Denmark, Odense, Denmark

AIKA TERADA • PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan;
Department of Computational Biology and Medical Sciences, Graduate School of Frontier
Sciences, University of Tokyo, Tokyo, Japan

KOJI TSUDA • Department of Computational Biology and Medical Sciences, Graduate
School of Frontier Sciences, University of Tokyo, Tokyo, Japan; Center for Materials Research
by Information Integration, National Institute for Materials Science, Tsukuba, Japan;
RIKEN Center for Advanced Intelligence Project, Wako, Japan

JEAN-PHILIPPE VERT • MINES ParisTech, PSL Research University, CBIO-Centre for
Computational Biology, Fontainebleau, France; Institut Curie, Paris Cedex, France;
INSERM U900, Paris, France; Département de mathématiques et applications, École
normale supérieure, CNRS, PSL Research University, Paris, France

KÉVIN VERVIER • Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa
City, IA, USA

QING WEI • Department of Computer Science, Purdue University, West Lafayette, IN, USA
LIMSOON WONG • School of Computing, National University of Singapore, Singapore,

Singapore
MIN WU • Data Analytics Department, Institute for Infocomm Research, Singapore, Singa-

pore
XIAOKUI XIAO • School of Computing, National University of Singapore, Singapore, Singa-

pore
YOSHIHIRO YAMANISHI • Division of System Cohort, Medical Institute of Bioregulation,

Kyushu University, Fukuoka, Japan; PRESTO, Japan Science and Technology Agency,
Saitama, Japan

SOHIYA YOTSUKURA • Bioinformatics Center, Institute for Chemical Research, Kyoto Uni-
versity, Uji, Japan

Contributors xi

QINGJUN YUAN • School of Computer Science, Fudan University, Shanghai, China; Shang-
hai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China

SHANFENG ZHU • School of Computer Science, Fudan University, Shanghai, China; Shang-
hai Key Lab of Intelligent Information Processing, Fudan University, Shanghai, China;
Center for Computational System Biology, Fudan University, Shanghai, China

Chapter 1

Identifying Bacterial Strains from Sequencing Data

Tommi Mäklin, Jukka Corander, and Antti Honkela

Abstract

Environmental and clinical settings can host a wide variety of both bacterial species and strains in a single
colony but accurate identification of the organisms is difficult. We describe BIB, a probabilistic method for
estimating the relative abundances of species or strains contained in mixed samples analyzed by short read
high-throughput sequencing. By grouping closely related strains together in clusters, the BIB pipeline is
capable of estimating the relative abundances of the clusters contained in a sequencing sample.

Key words Bacteria, Strain identification, Abundance estimation, Metagenomics, Probabilistic
modelling

1 Introduction

Infections caused by mixtures of bacterial strains can have varying
symptoms or require specialized treatment [1]. Classical methods
for identifying the infecting strains are based on culturing the
bacteria [2] but often lose some of the strains in the process.
Sequencing data can be used to identify and quantify the strains
or species represented in a sample rapidly and accurately.

Existing computational methods for identifying bacterial
strains can be divided based on their approach into four classes:
assembly-based, single nucleotide polymorphism (SNP)-based,
marker-gene-based, and alignment-based [3, 4]. Assembly-based
methods have the advantage of being able to identify the genomes
of novel strains contained in metagenomic samples but assembling
mixed samples is challenging due to nonuniform sequencing depth
of the organisms and difficulty in distinguishing between very
closely related strains [4]. SNP, marker gene, and alignment based
methods are restricted to identifying previously known bacteria,
but in doing so they are able to leverage the large amount of
existing data. The sensitivity of the methods increases as more
information is used. SNP-based identification is performed by
comparing SNP differences between strains which requires very

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_1, © Springer Science+Business Media, LLC, part of Springer Nature 2018

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_1&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_1

2 Tommi Mäklin et al.

high sequencing depth in metagenomic samples to identify a
sufficient number of SNP sites [3]. Marker-gene-based methods
can rapidly assign reads to a sequence but are only applicable
to species with conserved genes across the taxa and complete
genomes available [4]. Both SNP-based and marker-gene-based
methods require non-trivial additional work to define good
markers. Alignment-based methods such as BIB depend on a
high-quality reference genome set for alignment, but these are
quickly becoming available for more and more species. Given the
reference, the methods can automatically make full use of all the
information, leading to superior sensitivity and simplicity over SNP
and marker-gene methods.

We base our strain identification on aligning reads against
a set of reference genomes. To increase identifiability of reads
originating from closely related strains, the reference genomes are
grouped together according to some clustering or using previously
defined clonal complexes or other sequence types. The resulting
groups of bacteria are easier to identify than the individual strains
by solving the easier task of inferring the relative abundances of
the clusters. By defining a likelihood for a read to have originated
from one of the clusters based on the alignments and modelling
the sequencing process as a process mixing reads from the clusters
to obtain a sample, mixture modelling can be applied to effectively
obtain the relative abundances.

The BIB method [5] is founded upon an analogy between
transcript isoform expression estimation in RNA-sequencing [6, 7]
and bacterial strain abundance quantification, both of which
require the estimation of the abundance of highly similar sequences
(alternatively spliced transcript isoforms or different bacterial
strains) from short read sequencing data. Many of the most
successful methods for the RNA-sequencing transcript isoform
expression estimation [8] are based on probabilistic modelling of
the read generation and estimation of the mixing proportions of
the different sequences [9–11]. BIB is built upon BitSeqVB
[7], which is reasonably fast and provides the most accurate
quantification according to a recent assessment [8].

2 Materials and Methods

2.1 Overview The abundance estimation naturally splits into two distinct phases:
preprocessing the reference sequences and analysis of the reads.
Preprocessing consists of defining a collection of reference bacte-
rial genomes to align sequencing reads against, and obtaining a
grouping or clustering of the reference sequences. Depending on
the species, reference sequences, and the level of detail desired, the
clustering or grouping can be done, for example, using multilocus

Identifying Bacterial Strains from Sequencing Data 3

sequence typing [12], clonal complexes, or some algorithm
designed to cluster bacterial genomes such as BAPS [13, 14].

Analyzing the reads R is done by obtaining an alignment
against the reference sequences and then modelling the reads in a
sample as a mixture of reads independently drawn from sequences
contained in the reference clusters containing one or more ref-
erence genomes. We define a likelihood for a read rn to have
originated from a cluster, In = k, through the obtained alignments
based on assuming that observations of the reads are independent
of each other conditional on the cluster that generated them. If
the indicator variable I ∼ Categorical (θ) is assumed to follow a
categorical distribution, the mixing proportions θ of the clusters
correspond to their relative abundances in a sample.

Based on the above assumptions, the joint distribution of the
variables p (R, I, θ) and the posterior distribution p (θ |R) over the
mixing proportions can be written as

p (R, I, θ) = p (R|I) p (I |θ) p (θ) = p (θ)

N∏

n=1

p (rn|In) p (In|θ)

(1)

p (θ |R) ∝ p (R|θ) p (θ) =
∑

I

p (R|I) p (I |θ) p (θ) . (2)

We set a conjugate (to the categorical distribution) Dirichlet
(α, . . . , α) prior on the mixing proportions to enable inference of
the posterior based on the alignments. The prior parameters α = 1
are set to one.

Obtaining the posterior distribution is done by applying vari-
ational inference similarly as in the RNA-seq case [7]. Variational
Bayesian methods aim to derive an approximating distribution q to
the true posterior such that

q (θ, I) ≈ p (θ, I |R) (3)

and then optimize the approximation to be as close to the true pos-
terior as possible by minimizing the Kullback-Leibler divergence
between the two. Using variational Bayes to estimate the mixing
proportions instead of more traditional methods such as Markov
Chain Monte Carlo sampling has the benefit of being significantly
faster [7].

Incorporating the above ideas in an abundance estimation
pipeline results in a method that is rapid and accurate in identifying
the relative abundances of the clusters in a sample. Our provided
implementation in the form of the BIB software uses one reference
sequence for each cluster but the model can be extended to utilize
multiple reference sequences per cluster.

4 Tommi Mäklin et al.

2.2 Software The described abundance estimation pipeline is available in the
form of the BIB, short for Bayesian Identification of Bacteria,
software consisting of Python scripts that execute the necessary
steps for strain identification. Scripts are provided for building the
alignment index from the reference sequences, and for obtaining
the relative abundances of the reference clusters by running both
the read alignment and the abundance estimation.

Some software must be installed prior to running BIB. To per-
form the alignment, BIB uses Bowtie2 [15], which is designed to
align short reads to a reference. The abundance estimation is done
by using the BitSeqVB [6, 7] software. Abundance estimation
consists of two steps: computing the alignment probabilities for
the alignments observed by Bowtie2 and estimating the relative
abundances. We provide a script that runs both the read alignment
and the two steps in abundance estimation given the reads, the
alignment index, and the reference sequences. The script outputs
the relative abundances of the clusters to a text file.

2.3 Sequencing
Data

BIB is designed to work with high-throughput short-read sequenc-
ing data. The data are either single or paired-end reads from
uncultured or cultured bacterial samples containing single or
multiple species or strains. BIB estimates the relative abundance of
the reference clusters in the sample. No preprocessing of the reads
is necessary, as both the alignment and the probabilistic model used
will filter out noisy low-quality reads.

2.4 Reference
Collection and
Clustering

Sequences included in the reference should be chosen after consid-
eration of the following viewpoints:

1. The reference collection should include representatives for each
species or strain believed to be in the samples.
Rationale: BIB will assign all aligned reads to some cluster in
the reference collection. Reads originating from a species or
strain not represented in the reference tend to be assigned to
the closest match which will confound the results.

2. Very similar strains should be clustered together.
Rationale: Including each strain as an independent cluster will
both slow down the analysis and worsen the results because the
signal gets diluted, possibly leading to worse identification than
with larger clusters [5].

3. Expected potentially contaminating or otherwise uninteresting
species may be represented by a single catcher sequence.

4. For BIB, the single reference sequence representing the cluster
should be chosen to be as representative as possible, for example
by using a sequence that minimizes some distances to all others
in the cluster.

Identifying Bacterial Strains from Sequencing Data 5

5. If gapped sequences or sequences containing ambiguous bases
are used in the reference, the gaps and the ambiguous characters
should be removed prior to use.

6. For species with stable core genomes, the core genome align-
ment may be used as reference.
Rationale: This can reduce confusion caused by mobile ele-
ments in the accessory genome [5].

When estimating the relative abundances of different species,
clustering need not be performed, and the reference sequences
are simply representatives for the species. For relative abundance
analysis within the species, reference sequences for the species
should be clustered according to biologically relevant criteria.

After producing a clustering for the reference genomes, in the
BIB approach a representative genome is drawn from each of the
clusters. The drawn genomes are then included in a fasta file which
is fed to the indexing script BIB_prepare_index.py that produces
the alignment index. Preprocessing the reference is complete after
the index has been produced.

2.5 Read
Alignment and
Abundance
Estimation

Both the read alignment and the abundance estimation are per-
formed by the second BIB_analyse_reads.py script. The script
requires as input the read file(s), the reference sequences, and
the alignment index. Running the script first performs the read
alignment and then runs the abundance estimation which outputs
the relative abundances to a text file specified by the last argument.

The estimation process first computes the alignment probabil-
ities for each read and each observed alignment before applying
the BitSeqVB algorithm to obtain the posterior probabilities for
the mixing proportions. Applying the algorithm to the alignments
produces an output file containing the abundances where the first
column in the file (mean theta) corresponds to the estimated
relative abundance of the clusters while the next two characterize
the posterior variance. The file will contain a line for each cluster
as represented by a reference genome included in the reference
collection.

The probabilistic model used by the BitSeq, and consequently
the BIB implementation, includes an additional parameter mod-
elling the probability of a sequenced read being noise [6]. This
adds an extra line in the output containing this noise probability
[5].

2.6 Example To illustrate the various steps in running the BIB pipeline
from scratch, we construct a reference set from four Staphy-
lococcus aureus assemblies and estimate the relative abun-
dances from sequencing data for a fifth isolate. The ref-
erence assemblies are available in the GitHub repository

6 Tommi Mäklin et al.

https://github.com/PROBIC/BIB-S-aureus-example and the
sequencing reads can be downloaded from the European
Nucleotide Archive with run accession SRR016122.

1. Obtain the core genome alignment.

progressiveMauve --output=full_alignment.xmfa
saur_assemblies .fasta

2. Extract LCBs shared by all genomes.

stripSubsetLCBs full_alignment.xmfa
full_alignment.xmfa.bbcols
core_alignment.xmfa 500 4

The first number “500” is the minimum length of the LCB;
the second number “4” indicates the minimum number of
genomes that share an LCB.

3. Concatenate all the LCBs.

perl xmfa2fasta.pl --file core_alignment.xmfa
> core_alignment.fasta

4. Run hierBAPS to obtain a clustering with 1 level and a
maximum of 10 clusters.

hierBAPS.sh exData core_alignment.fasta fasta
hierBAPS.sh hierBAPS seqs.mat 1 10 results

The clustering is stored in the results.partition.txt file.
Sequences 1 and 2 belong to cluster 1, and sequences 3 and 4
to cluster 2.

5. Select sequences 1 and 3 as the reference sequences using
fastagrep which is included in the BitSeq distribution.

fastagrep.sh ">1 " core_alignment.fasta
> ref_seqs.fasta

fastagrep.sh ">3 " core_alignment.fasta
>> ref_seqs.fasta

6. Remove gaps from the reference sequences.

sed ’s/-//g’ ref_seqs.fasta
> ref_seqs_gapless.fasta

7. Build the alignment index.

python BIB_prepare_index .py ref_seqs_gapless.fasta
reference_alignment_index

8. Perform the read alignment and abundance estimation.

python BIB_analyse_reads .py SRR016122.fastq.gz
ref_seqs_gapless.fasta
reference_alignment_index
SRR016122_abundances

https://github.com/PROBIC/BIB-S-aureus-example

Identifying Bacterial Strains from Sequencing Data 7

Acknowledgements

This work was supported by the Academy of Finland [259440 to
A.H., 251170 to J.C.].

References

1. Balmer O, Tanner M (2011) Prevalence
and implications of multiple-strain infections.
Lancet Infect Dis 11:868–878

2. Didelot X, Bowden R, Wilson DJ, Peto TEA,
Crook DW (2012) Transforming clinical micro-
biology with bacterial genome sequencing. Nat
Rev Genet 13:601–612

3. Brito IL, Alm EJ (2016) Tracking strains in the
microbiome: insights from metagenomics and
models. Front Microbiol 7:712

4. Breitwieser FP, Lu J, Salzberg SL (2017) A
review of methods and databases for metage-
nomic classification and assembly. Brief Bioinf
https://doi.org/10.1093/bib/bbx120

5. Sankar A, Malone B, Bayliss SC, Pascoe B,
Méric G, Hitchings MD et al (2016) Bayesian
identification of bacterial strains from sequenc-
ing data. Microb Genomics 2:e000075

6. Glaus P, Honkela A, Rattray M (2012) Iden-
tifying differentially expressed transcripts from
RNA-seq data with biological variation. Bioin-
formatics 28:1721–1728

7. Hensman J, Papastamoulis P, Glaus P, Honkela
A, Rattray M (2015) Fast and accurate approx-
imate inference of transcript expression from
RNA-seq data. Bioinformatics 31:3881–3889

8. Kanitz A, Gypas F, Gruber AJ, Gruber AR,
Martin G, Zavolan M (2015) Comparative
assessment of methods for the computational

inference of transcript isoform abundance from
RNA-seq data. Genome Biol 16:150

9. Xing Y, Yu T, Wu YN, Roy M, Kim J, Lee C
(2006) An expectation-maximization algorithm
for probabilistic reconstructions of full-length
isoforms from splice graphs. Nucleic Acids Res
34:3150–3160

10. Jiang H, Wong WH (2009) Statistical infer-
ences for isoform expression in RNA-Seq.
Bioinformatics 25:1026–1032

11. Li B, Ruotti V, Stewart RM, Thomson JA,
Dewey CN (2010) RNA-Seq gene expres-
sion estimation with read mapping uncertainty.
Bioinformatics 26:493–500

12. Maiden MC, Bygraves JA, Feil E, Morelli G,
Russell JE, Urwin R et al (1998) Multilocus
sequence typing: a portable approach to the
identification of clones within populations of
pathogenic microorganisms. Proc Natl Acad Sci
USA 95:3140–3145

13. Cheng L, Connor TR, Sirén J, Aanensen DM,
Corander J (2013) Hierarchical and spatially
explicit clustering of DNA sequences with
BAPS software. Mol Biol Evol 30:1224–1228

14. Corander J, Sirén J, Arjas E (2008) Bayesian
spatial modeling of genetic population struc-
ture. Comput Stat 23:111

15. Langmead B, Salzberg SL (2012) Fast gapped-
read alignment with Bowtie 2. Nat Methods
9:357–359

https://doi.org/10.1093/bib/bbx120

Chapter 2

MetaVW: Large-Scale Machine Learning for Metagenomics
Sequence Classification

Kévin Vervier, Pierre Mahé, and Jean-Philippe Vert

Abstract

Metagenomics is the study of microbial community diversity, especially the uncultured microorganisms
by shotgun sequencing environmental samples. As the sequencers throughput and the data volume
increase, it becomes challenging to develop scalable bioinformatics tools that reconstruct microbiome
structure by binning sequencing reads to reference genomes. Standard alignment-based methods, such
as BWA-MEM, provide state-of-the-art performance, but we demonstrate in Vervier et al. (2016) that
compositional approaches using nucleotides motifs have faster analysis time, for comparable accuracy.
In this work, we describe how to use MetaVW, a scalable machine learning implementation for short
sequencing reads binning, based on their k-mers profile. We provide a step-by-step guideline on how we
trained the classification models and how it can easily generalize to user-defined reference genomes and
specific applications. We also give additional details on what effect parameters in the algorithm have on
performances.

Key words Metagenomics, Machine learning, Classification, Next-generation sequencing,
Microbiology, Binning

1 Introduction

Metagenomics, the study of microbial community genomic con-
tent, has become a popular sequencing protocol to access all
organisms present in a sample including those who do not grow
on culture media [1]. The experimental output of a metagenomics
experiment consists in a collection of short sequencing reads
obtained by shotgun sequencing of the microbial DNA in the
sample [2]. Recent taxonomic binning methods explicitly assign
each read to a clade of a pre-defined taxonomy, using only the set
of k-mers it contains [3, 4]. It is a necessary step for downstream
applications which require draft-genome reconstruction or fine-
grain characterization. This may notably be the case in a diagnosis
context, where further analyses could aim to detect pathogen
microorganisms or antibiotic resistance mechanisms [5]. However,

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_2, © Springer Science+Business Media, LLC, part of Springer Nature 2018

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_2&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_2

10 Kévin Vervier et al.

training a machine learning model for taxonomic binning with
standard libraries is computationally challenging, with potentially
billions of training examples, each represented by a vector in
millions of dimensions for, e.g., k-mers of lengths 12. Here,
we demonstrate the potential of compositional approaches for
taxonomic label assignment using a large-scale machine learning
algorithm, called Vowpal Wabbit. We show that it provides an
interesting trade-off in speed and accuracy, particularly when
confronted to species absent from the reference database (rank-
flexible) and for a moderate number of candidate species (700).

2 Materials

2.1 MetaVW:
Metagenomics
Reads
Classification

The following archive1 contains the data used in [3], as well as
programs allowing to reproduce the results under UNIX or Mac
OS X distributions. This archive is structured as follows:

• The data directory contains the sequence data used to carry
out the experiments.

• The src directory contains script allowing to reproduce the
experiments.

• The tools directory contains source code of utilities used to
draw fragments from genomic sequences.

Details on the content of the three directories can also be
found at http://projects.cbio.mines-paristech.fr/largescalemetage
nomics. After downloading the project archive, first untar it.
Then, run the BASH script INSTALL.sh that can be found in
the tools directory. This script will process the installation of the
GDL library and create the binary executables. In order to check
that everything went well during the installation, please use the
tools/test/test.sh script. If no error is detected, it will use
installed tools to simulate a toy dataset.

2.2 Third-Party
Softwares

To run the experiments, you need, in addition, to install the
following third-party softwares:

• Vowpal Wabbit (version ≥ 7.7.0), the machine-learning algo-
rithm

• Grinder (version ≥ 0.5.3) to simulate datasets with sequencing
errors

• R (version ≥ 3.0.0) to analyze and plot the results

1http://projects.cbio.mines-paristech.fr/largescalemetagenomics/large-
scale-metagenomics-1.0.tar.gz.

http://projects.cbio.mines-paristech.fr/largescalemetagenomics
http://projects.cbio.mines-paristech.fr/largescalemetagenomics/large-scale-metagenomics-1.0.tar.gz
https://github.com/JohnLangford/vowpal_wabbit/wiki
http://sourceforge.net/projects/biogrinder/
http://cran.r-project.org/
http://projects.cbio.mines-paristech.fr/largescalemetagenomics/large-scale-metagenomics-1.0.tar.gz
http://projects.cbio.mines-paristech.fr/largescalemetagenomics/large-scale-metagenomics-1.0.tar.gz

Large-Scale Machine Learning for Metagenomics 11

Our implementation uses the following libraries, which you
do not need to install since they are provided in our software for
convenience

• kseq library to parse FASTA/FASTQ files
• GDL library implementing several structures like lists and hash

tables (note that we provide a slightly updated version that
properly compiles on Mac OS X)

2.3 Reference
Genome Databases
for Rank-Specific
Applications

In [3], we considered three databases of genomes (small, medium,
and large) for different validation applications. For each of those
databases, we carefully separated reference (training) genomes and
validation genomes to avoid overoptimistic estimation of classifi-
cation performance.

The small database consists of 356 complete genome
sequences, from 51 bacterial species, described in data/train-
dataset/small-DB/reference-dataset. For the small vali-
dation set, we randomly selected 52 genomes (see Note 1) and
removed them from the reference database. We recommend to
use the small database to rapidly benchmark performances and
parameters impact, such as k-mer size. We used the medium
and large databases to create classification models on a scale
larger than with the small database. We downloaded the 5201
complete bacterial and archeal genomes available on RefSeq as
of July 2014 (see Note 2). We then filtered these sequences
with only keeping well-covered genera with at least three species
representants and also removed short genomes (less than a million
base pairs), corresponding to draft genomes, plasmids, and contigs.
The filtered database consists in 774 species and 2961 genomes.
For the medium database, we extracted 110 species with at least
three strains and randomly selected one strain per species to go in
the validation set. We added to the medium reference set genomes
from 83 species with only two strains. The large validation set is
made of one randomly selected strain from the 193 (110 + 83)
species, and the remaining 2768 genomes create the large reference
database. The FASTA files for both medium and large databases
are located in data/train-dataset.

2.4 Reference
Genome Databases
for Rank-Flexible
Applications

We also evaluate MetaVW models in more challenging settings and
designed a novel lineage validation set, composed of genomes we
filtered in the rank-specific application, because of lack of coverage
at the genus level, with less than three species. All the species
present in this database were not considered during the model
training process, so one does not expect the model to provide a
classification answer at the species level but above. Table 1 shows
the number of strains involved in the novel lineage validation set
from the large database.

http://lh3lh3.users.sourceforge.net/kseq.shtml
http://eqtnminer.sourceforge.net/index.php/Genetic_Data_analysis_Library_(GDL)

12 Kévin Vervier et al.

Table 1
Number of strains involved in the novel-lineage study, per reachable rank

Reachable rank
Test strains
considered Test species

Reference taxa
represented

Genus 584 421 69/126

Family 338 146 42/114

Order 183 147 18/54

Class 143 111 9/52

Phylum 97 81 4/16

The first column gives the number of strains considered for each reachable rank. The
second column gives the number of species these strains originate from. The last column
shows the number of taxa of this rank that they represent in the large reference database.
For instance, the first row means that 584 strains coming from 421 species are reachable
at the genus level, but not beneath, and represent 69 genera of the 126 genera present
in the reference database

2.5 Utility
Functions

In the tools directory, one can find C utility programs which
most of the data processing rely on, prior to model training,
and classification predictions. Drawfrag is used to draw random
fragments (see Note 3) from reference genomes. Users can provide
the fragment size, the expected average genome coverage, and
the reference genomes repository. Fasta2vw is used to convert a
FASTA file into a plain text file compliant with VW input format
(see Note 4). Spectrumpredict computes predictions faster than the
regular VW program, because it takes advantage of the particular
structure of the k-mers (see Subheading 3). Each of these tools has
its own help menu.

3 Methods

3.1 Read
Classification
Model Using
Machine Learning

Model training is done using src/main.sh script. In this section,
we provide a step-by-step description of the process, but interested
users do not have to run each command separately. Figure 1 gives
an overview of the training and prediction processes.

Training sets for large number of classes and high coverage do
not often fit in memory. Online learning can be used to reduce
the memory footprint of the model training step. It consists in
generating a small subset of the whole training data and only
uses one batch at a time to optimize the model weights. In
the MetaVW framework, training observations are drawn from
reference genomes DB, using the drawfrag tool. Those fragments
have a constant length L (default: 200 bp), and the number
of sampled fragments is defined by the mean COVERAGE for all
genomes in the reference database. Each set of random fragments
is called a training batch. Each of these short DNA sequences
requires to be processed in the VW input format (see Fig. 1 for

Large-Scale Machine Learning for Metagenomics 13

Fig. 1 MetaVW overview. The left panel represents the training step, where reference genomes are used to
generate sequencing reads fed to Vowpal Wabbit algorithm to optimize the discriminative model. The right
panel shows how this model is then used to make predictions on a new dataset

an example). Especially, the tool fa2vw converts FASTA sequence
into a vector of K-mer frequencies (see Note 5). As a linear
representation, MetaVW models consist each in a weight vector,
reflecting how important each motif is. VW implementation uses
hashing strategy to efficiently store and query the model weights.
Weight optimization is obtained through supervised learning on
training sequences. For each training batch, model predictions
are compared with the actual taxon and weights are adjusted
in case of classification error. We demonstrated in [3] that after
iteratively seeing enough NBATCHES data (see Note 6), the model
performances starts to plateau.

3.2 Use Vowpal
Wabbit for Online
Learning

The script 2-build-models/src/01.main.sh is the central ele-
ment of the MetaVW model learning step. Multiple VW parameters
(see Note 7) were optimized using the small database in [3].
Especially, we focused on the impact of the number of training
examples, the k-mer size, and the hash table size in BITS (see
Note 8). For each iteration through a new batch of training data,
we update the existing model (–save_resume flag), providing a
backup version of the predictive model in case of the process
unexpectedly stops.

http://01.main.sh

14 Kévin Vervier et al.

3.3 Generate
Training Set

One of the main advantages of VW, previously described, is
its ability to process training data in small random batches. By
combining the tools drawfrag and fa2vw, it is possible to directly
stream training examples into VW without writing the data on
disk. This procedure is also memory efficient given that only
one batch at a time is loaded in memory. Therefore, the whole
training data in VW format is not stored. One important step is to
randomize the order the fragments are presented to the algorithm;
drawfrag by default groups together all the fragments coming
from the same reference genome, which is not desirable when
streaming data in online learning. Therefore, we pipe the output
of fa2vw into an efficient awk/rand combination, while keeping
the mapping between the fragments and the corresponding taxon.
This randomly sorted data is then directly streamed as an input for
the Vowpal Wabbit algorithm.

3.4 Generate
Validation Sets

In [3] we extensively evaluated MetaVW using multiple difficulty
levels. First, we generate a set of error-free fragments simply by
using the drawfrag tool (see 01.generate-dataset-fragments.sh).
Then, we proposed to evaluate how the models perform on
real-world data with sequencing noise. In [3], two error models
were considered. First, 02.generate-dataset-reads-homo.sh
generates the homopolymer test datasets. The other error
model provided in 03.generate-dataset-reads-mutation.sh
generates the mutations test dataset. Interestingly, we found that
our approach trained on error-free fragments is competitive in
terms of accuracy for reasonable amounts of sequencing errors.

3.5 Rank-Specific
Predictions

The classification approach described in the previous sections
is called rank-specific, given that all the sampled fragments are
labeled at the same taxonomic rank (e.g., species). Source code
for predicting labels on a set of sequences can be found in
3-make-prediction/01.make-predictions.sh. The computa-
tional aspect of the prediction step involves computing a score
for each candidate species, defined as a dot product between
the k-mer profile of the sequence to classify and the vector of
weights obtained by training the predictive model. To efficiently
compute this dot-product on vectors with millions of dimensions,
we implemented a procedure, called spectrumpredict, described
in [6]. With this procedure, each A, T, G, and C nucleotide is
encoded by two bits, which allows to directly convert a k-mer
as an integer between 0 and 4k − 1. It allows to compute
the score directly from a FASTA sequence, without the need to
convert the DNA sequence in VW hashed format, which can be
time-consuming for such a large number of features. To gain
computational efficiency, we reformat the VW model to a binary
format (vw-to-binary.sh), making it faster to load in memory
and process:

Large-Scale Machine Learning for Metagenomics 15

1. Use tools/enumerateKmers to create a plain text file
containing all the possible k-mers (4k).

2. Invert the hash table created along the VW predictive model
using the flag –invert_hash

3. Extract the weights from the file using tools/parseHash

Provided that the weight vector is loaded into memory
(see Note 9), the score can be computed “on the fly” while
evaluating the k-mer profile of the sequence to be classified,
by adding the contribution of the current k-mer to the score.
To compare and evaluate multiple models, we also provide
src/3-make-predictions/src/02.generate-graphs.R which
computes five different performance indicators, as described in [3].

3.6 Rank-Flexible
Predictions

In this section, we describe how taxonomic binning methods can
also be used to classify reads coming from novel bacterial lineages
at their appropriate taxonomic rank. For instance, a strain is said
to be reachable at the genus level when its species is not part
of the reference database but when other species of the same
genus are represented. We derive a rank-flexible classifier able to
choose the most adequate taxonomic rank to classify a read. It
also includes a rejection option, where a read remains unclassified
if too different from the training sequences distribution. Our
rank-flexible algorithm is a combination of multiple rank-specific
models trained at species, genus, and family levels. To assess which
rank is the most suitable for a given prediction, we combine the
following two criteria [7]: the credibility estimates if the highest
predicted score (between −1 and +1) is sufficient enough and
rejects unlikely predictions, and the confidence compares the two
top-scoring classes and rejects ambiguous predictions. An iterative
process starts from the species-level models and assigns the credible
reads to a given species, whereas rejected reads at the species level
are predicted by the genus-level models and so on. If a read is
rejected by all rank-specific models considered, it is left unclassified.
In [3], we described a procedure to optimize the credibility and
confidence thresholds and show that trade-offs can be achieved in
terms of precision and recall, depending on user-defined settings,
including how complex is the studied microbial community and
the estimated proportion of novel organisms (species). To calibrate
these thresholds, we include an internal calibration step during the
model training:

1. Split the reference database into a calibration database,
obtained by sampling one strain for each species represented
by several strains, and a learning database, defined from the
remaining strains.

2. Build rank-specific models from the learning database (e.g.,
at the species, genus, and family ranks).

16 Kévin Vervier et al.

3. Optimize the thresholds for the reject option mechanism
using the calibration database. This can be done by simu-
lating fragments from the calibration genomes, classifying
them using the different models, and optimizing the perfor-
mance of the model according to the thresholds.

These thresholds can be set on a taxon-per-taxon basis or
globally and can be further optimized for each rank. The opti-
mization procedure we used relies on two separate steps. First,
we use the same threshold for credibility across ranks and taxa.
This threshold depends on a user-defined trade-off in terms of
proportions of (i) rejected predictions, (ii) predictions made at
various ranks, (iii) correctness of predictions at various ranks.
This is illustrated in Fig. 2, where in panel A, as expected, the
proportion of predictions made at the species level decreases as
the threshold value increases, while the proportion of predictions
made at upper ranks increases, as well as the rejection rate. We
also note from panel B that this procedure allows to reduce the
proportion of misclassified sequences, at the cost of unclassified
sequences and sequences correctly classified at upper ranks. In [3],
we set the global credibility threshold to 0, leading to a reasonable
trade-off in terms of error and rejection rate. Second, we define
the confidence thresholds on a taxon-by-taxon basis. Although
the same kind of approach done for credibility threshold can be
used, we observed very different behaviors regarding prediction

10
0

80
60

pe
rc

en
ta

ge
 o

f p
re

di
ct

io
ns

pe
rc

en
ta

ge
 o

f p
re

di
ct

io
ns

40
20

–1.0 –1.0 0.0

score threshold

rank of prediction vs score decision threshold
status of prediction vs score decision threshold

overall performance

score threshold

0.5 1.0

species
speciesgroup
genus
family
unclassified

correct–species
correct–upper
unclassified
wrong

–1.0 –1.0 0.0 0.5 1.0

0

10
0

80
60

40
20

0

Fig. 2 Calibration procedure and impact of a global credibility threshold. A global credibility threshold taken
in [−1; +1] is applied to random fragments from the calibration genomes. Left: evolution of the prediction
rank, defined in terms of the proportions of rejected predictions and of predictions made at upper ranks. Right:
evolution of the prediction status, defined in terms of the proportions of predictions that are rejected (gray),
erroneous (red), correct at the species level (green), and correct at an upper rank (blue)

Large-Scale Machine Learning for Metagenomics 17

0.0 0.5 1.0 1.5

delta-score threshold

2.0 2.5 3.0

10
0

80
60

ra
te

 (
%

)

40
20

species Klebsiella pneumoniae

reject
wrong
correct-species
correct-upper
mean value
median value
1st quartile

0

0.0 0.5 1.0 1.5

delta-score threshold

2.0 2.5 3.0

10
0

80
60

ra
te

 (
%

)

40
20

species Brucella suis

reject
wrong
correct-species
correct-upper
mean value
median value
1st quartile

0

0.0 0.5 1.0 1.5

delta-score threshold

2.0 2.5 3.0

10
0

80
60

ra
te

 (
%

)

40
20

species Desulfitobacterium hafniense

reject
wrong
correct-species
correct-upper
mean value
median value
1st quartile

0

0.0 0.5 1.0 1.5

delta-score threshold

2.0 2.5 3.0

10
0

80
60

ra
te

 (
%

)

40
20

species Mycoplasma mycoides

reject
wrong
correct-species
correct-upper
mean value
median value
1st quartile

0

Fig. 3 Calibration procedure for taxon-by-taxon definition of the confidence threshold. Left-hand side: species
for which prediction ambiguity is not an issue, hence for which confidence-based rejection does not allow to
reduce the error rate. Some of these species show a good classification performance, in particular higher than
a predefined target level of performance (top left). Others show a lesser level of performance (bottom left).
In both cases, the confidence threshold is set to zero, as shown by the vertical blue lines. Right-hand side:
species for which ambiguity is an issue and for which this confidence-based rejection has a positive effect. Top
right: increasing the threshold allows to reach a target upper recall performance (solid horizontal gray line).
Bottom right: although this confidence-based rejection allows to decrease the error rate, it does not allow to
reach the target performance

ambiguity across species. It simply reflects that the level of genomic
proximity is not constant across the taxonomy. Therefore, a global
threshold is unlikely to be optimal and actually tends to degrade
the performance for some taxa. Figure 3 illustrates four behaviors
observed while analyzing the effect of the confidence threshold

18 Kévin Vervier et al.

on species-level predictions. For species where ambiguity is not
an issue (Fig. 3 left-hand side), the confidence threshold is set
to zero. For species for which ambiguity is an issue (Fig. 3
right-hand side), the confidence-based rejection allows to reduce
the rate of erroneous predictions. In the case of B. suis (top
right), this rejection procedure allows to reach a target level of
classification performance defined in terms of the average upper
recall (orange curve). This target performance is defined, here, as
the average value of the upper recall across species, obtained using
species-specific models only (solid gray line). For such species,
the confidence threshold is set to the minimum value allowing to
reach the target performance. In the case of M. mycoides shown
in the bottom right panel, while decreasing the error rate, it does
not allow to reach the target performance. For such species, the
confidence threshold is defined as the smallest value allowing to
reach a minimum attainable error rate (up to a tolerance of 1% in
absolute value). Last but not least, we note that the confidence-
based rejection is unnecessary for ranks higher than species and
actually degrades the level of resolution of the prediction while not
reducing its error rate.

3.7 Training
a New VW Model

Users might want to use their own reference database to train a
MetaVW model. We make it easy to adapt 01.main.sh to user-
defined parameters, where only few lines need to be modified:

1. Update fasta = ... line by providing the path to the user-
defined reference genome database (FASTA format).

2. Update the following line taxids = ... by providing the
path to the set of taxon IDs found in the reference genome
database.

3. (Optional) Update outputDir = ... line with the path
where the model and predictions are stored.

4. (Optional) All parameters are provided with the default
value used in [3] but can also be modified in the script.

4 Notes

1. The 52 genomes are from 51 species, but two genomes
are available for the Fransiscella tularensis species, with one
actually originating from the novicida subspecies.

2. We used the fragment classification package utility script [8]
to efficiently query RefSeq server for FASTA sequence files.

3. Drawfrag can take a random seed value as input argument,
allowing reproducible fragment sampling.

4. VW input format consists in a tabulate-separated file,
where each line is an input observation, starting with
the corresponding class label (training only). Each column

http://01.main.sh

Large-Scale Machine Learning for Metagenomics 19

corresponds to the relative abundance of a given k-mer in
the considered DNA sequence.

5. The length of the vector can be up to 4k, corresponding to
the number of possible combinations obtained with the four
nucleotides being placed in k different positions.

6. This process takes some time, generates large files (12 and
25 gigabytes for the small and large databases, respectively),
and has a comparable memory footprint. We also observed
that training time depends of number of classes (Fig. 7 of
[3]).

7. L1 and L2 regularization are parameters that are set to zero
by default. If one wants to apply constraints on the classifi-
cation model weights, it is recommended to evaluate small
values first (e.g., 10ˆ-7). Especially for L1 regularization,
large values will create smaller models with few features with
nonzero weights, leading to a loss of accuracy.

8. VW proceeds by hashing the input features into a vector
offering at most 2ˆ32 entries. This hashing operation can
induce collisions between features, following the pigeonhole
principle, which can be detrimental to the model if the
number of features becomes too high with respect to the
size of the hash table. This issue is even more stressed
in a multiclass setting, where the number of hash table
entries available per model is divided by the number of
classes considered. For instance, on the small dataset, (52-
1) models are stored in the hash table, which reduces the
number of entries available per model to 2ˆ32/51 4ˆ13.
We have empirically observed that performance could not
increase for k greater than 12 and actually decreased for k-
mers greater than 15.

9. The drawback of this procedure lies in the fact that the
vectors of weights defining the classification models need to
be loaded into memory, which can be cumbersome in a large
multiclass setting. For 193 and 774 species and k-mers of
size 12, this amounted to 12 and 48 gigabytes, respectively.

Acknowledgments

This work was supported by the European Research Council
(SMAC-ERC-280032 to J-P.V.).

References

1. Handelsman J (2004) Metagenomics: applica-
tion of genomics to uncultured microorganisms.
Microbiol Mol Biol Rev 68(4):669–685

2. Quince C et al (2017) Shotgun metagenomics,
from sampling to analysis. Nat Biotechnol
35(9):833–844

20 Kévin Vervier et al.

3. Vervier K et al (2016) Large-scale machine learn-
ing for metagenomics sequence classification.
Bioinformatics 32(7):1023–1032

4. Wood DE, Salzberg SL (2014) Kraken: ultrafast
metagenomic sequence classification using exact
alignments. Genome Biol 15:R46

5. Simner PJ et al (2018) Understanding the
promises and hurdles of metagenomic next-
generation sequencing as a diagnostic tool
for infectious diseases. Clin Infect Dis 66(5):
778–788

6. Sonnenburg S et al (2006) Large scale learning
with string kernels. J Mach Learn Res 7:1531–
1565

7. Gammerman A, Vovk V (2007) Hedging predic-
tions in machine learning. Comp J 50(2):151–
163

8. Parks D et al (2011) Classifying short genomic
fragments from novel lineages using composition
and homology. BMC Bioinformatics 12:328–
344

Chapter 3

Online Interactive Microbial Classification and Geospatial
Distributional Analysis Using BioAtlas

Jesper Lund, Qihua Tan, and Jan Baumbach

Abstract

In recent decades, the accumulation of data on 16s ribosomal RNA genes has yielded free and public
databases such as SILVA, GreenGenes, The Ribosomal Database Project, and IMG, handling massive
amounts of raw data and meta information. 16s rRNA gene contains hypervariable regions with great
classification power. As a result, numerous classification tools have emerged including state-of-the-art tools
such as Mothur, Qiime, and the 16s classifier. However, there is a gap between the sequence databases, the
taxonomy profiling tools and available meta information such as geo/body-location information. Here, we
present BioAtlas, and interactive web tool for searching, exploring, and analyzing prokaryotic distributions
by integration of various resources of metagenomics databases. In the following section we show how to
use BioAtlas to (1) search and explore prokaryote occurrences across the geospatial map of the world, (2)
investigate and hunt for occurrences across generic user-generated surface-specific maps, with an example
map of a human female, with data from Bouslimani et al., and (3) classify a user-given sequences dataset
through our online platform for visual exploration of the spatial abundances of the identified microbes.

Key words Taxonomic classification, 16s gene, Ribosomal RNA, Distributional analysis, Microbiol-
ogy, Online tool, Maps, Data mining, Integration, Metadata

1 Introduction

Ever since the method of using the 16s ribosomal RNA (rRNA)
gene’s genomic-level properties for classifying prokaryotes was
proceduralized [8], databases with a vast number of genomic
sequences of prokaryotic origin have emerged (SILVA rRNA
database project [14] (SILVA), The Ribosomal Database Project
[5] (RDP), GreenGenes [7] (GG)). Due to its highly evolutionary
intra-species conservation and inter-species hyper-variability [16]
the gene has become the standard marker for fast and stable
identification of organisms of prokaryotic origin [12]. A number
of classification tools emerged: Mothur [15], Qiime [3], 16S
Classifier [4], which built on the accumulated 16s RNA resources
(SILVA, RDP, GG) and differential taxonomic nomenclatures

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_3, © Springer Science+Business Media, LLC, part of Springer Nature 2018

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_3&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_3

22 Jesper Lund et al.

within the microbial community [6]. In addition, we observe
a skyrocketing increase of both manually curated and automat-
ically created meta databases: the Genomes OnLine Database
[13] (GOLD), Integrated Microbial Genomes and Microbiomes
[10] (IMG), The European Bioinformatics Institute (EMBL-EBI)
Metagenomics [11].

Now there is a gap between these sequence databases, the
software tools for taxonomy profiling, and the databases for meta
information, such as geo/body-locations, which hinders follow-up
and integrated data analyses of existing data as well as new data.
In order to help form a better, more integrated picture of our
metagenomics data, we have developed BioAtlas [9], a novel user-
friendly, browser-based analytics software for analyzing genomic
and metagenomic distributions across diverse surfaces to study,
e.g., the geospatial distribution on the globe, the human skin
surface, and generic user-contributed maps. BioAtlas integrates
numerous public online tools. It is free, fast, and easy to use, and
provides a secure user interaction mode with a focus on usability
and effectiveness.

1.1 Brief
Description of
BioAtlas Data
Integration

From GOLD we have extracted and mined 21,786 microbial
genomic and meta-genomic sequence projects, of which 2627
contained geospatial information (latitude, longitude, text-based).
Based on these projects, and their corresponding raw 16s rRNA
sequences retrieved from IMG and sequences of eukaryote origin
discarded, a total of 459,304 sequences have been stored. We
classified them using Mothur using the taxonomy of the SILVA
database (utilizing the nomenclatures of UniEuk [1]) and SILVA’s
SSU Ref NR 99 (strong quality filtering, high minimum sequence
length) database as reference, which resulted in 1805 distinct
prokaryotes classified (92.2% classification ratio), which is spread
across the 2627 markers on the globe. In addition to the geo-
graphical markers, we created skin-surface maps of the human body
for both genders, using raw genomic data from Bouslimani et al.
[2] consisting of circa 400 markers spread across the skin surface,
which again was classified with Mothur yielding 851 distinct
prokaryotic organisms. We store everything in an integrated data
warehouse running behind the BioAtlas web servers.

2 Methods

In the following, we describe step by step how BioAtlas may
be utilized to facilitate map-supported browsing of public 16S
rRNA sequence data, and how to analyze user-provided sequences
without requiring manual mapping to taxonomies and external
databases. We concentrate on three major features of BioAtlas.
These include: (1) Browsing the geographical map of the world

Microbial Distributional Analysis Using BioAtlas 23

(Subheading 2.1), using our data warehouse knowledge base,
consisting of observed locations of prokaryota based classification
analysis using the markers mined from GOLD and classified
with Mothur. (2) Browsing surface-specific distributions (Sub-
heading 2.2) contributed by the user. Here we present a generic
example for this kind of analysis, based on microbial observations
extracted from the skin of a human female taken from Bouslimani
et al. (3) Classifying strains of 16s ribosomal RNA (rRNA) by
online mapping to our knowledge base, and subsequent display
and filtering both the map of the world and generic surface-specific
maps using the mapping results (Subheading 2.3). Here we use
2000 sequences of 16s rRNAs of actinobacteria randomly selected
as online example dataset (collected from GG).

For each of the below protocols, we assume the front page of
BioAtlas to be the starting point: https://bioatlas.compbio.sdu.
dk/. The only prerequisite before starting is a web browser and
internet connection. For a guided video and sound tour of the
BioAtlas website, the user may watch the screencast video on the
front page.

2.1 Browsing
Geospatial
Distributions of
Prokaryota

On the world map page, one is presented with two interactable
features of the world map. (1) The actual geographical version of
the globe presented using the GoogleMaps API, with markers cor-
responding to locations of prokaryota sampling sites (see Step 2),
referred to as the “map.” (2) The taxonomic phylogenetic tree to
the left allowing for filtering of prokaryota of interest within the
map (see Step 8).

The map features markers for locations mapped to prokaryotes
based on samples from GOLD. The locations have been extracted
by either using geographic coordinate data (longitude/latitude) or
text-based using GoogleMaps API’s geocoding. We here present
a demonstration for finding bacteria near Birmingham University
(see Step 15) (Fig. 1).

1. To get started, click the “World Map” button in the main
menu bar to go to the World map page. On the front page,
it is also featured as “World map” under the “Get started”
paragraph.

2. Navigating the world map and exploring markers

3. The map displays all markers currently filtered by the phyloge-
netic tree (see Point 8).

4. The world map is interactable using the mouse. Click anywhere
and drag to move around.

5. The red markers on the map correspond to known locations of
prokaryotic findings based on GOLD biosamples.

https://bioatlas.compbio.sdu.dk/

24 Jesper Lund et al.

Fig. 1 Graphical overview for the geospatial world map page. Red markers: sample locations from genomics
and metagenomics sequencing projects

6. Clicking a marker would bring up an overlay page with
metadata and external resources (see Note 1).

7. The world map also features a heat map of the representation of
prokaryotes found for each marker, with the heat color being
relative to the ratio of prokaryotes found for each respective
marker (see Note 2).

8. Filtering the markers

9. To the left of the world map, a phylogenetic tree is presented,
with identical taxonomic nomenclature as presented by the
SILVA reference database (see Note 3).

10. The tree consists of nodes, each representing a level of the tree
of life.

11. It is possible to expand and compress each branch by clicking
on the arrows next to it.

12. Clicking the text, or on the checkbox next to each node, allows
selecting and deselecting whole branches (see Note 4).

13. This affects the markers shown on the world map to the
right correspondingly, allowing one to focus on prokaryotes
of interest.

14. In addition to manual filtering, it is also possible to search for
a lineage of interest for fast selection and deselection of nodes,
using the text input above the tree.

Microbial Distributional Analysis Using BioAtlas 25

Fig. 2 Searching the taxonomic tree for filtering, with nodes of phylum rank shown

15. Working example: Exploring the world, looking for Acti-
nobacteria (Phylum rank: Actinobacteria) near Birmingham
University

16. Start by clicking the “Deselect All” button to the left, just
above the taxonomic tree.

17. Filter the taxonomic tree to the left by searching for “phylum”
looking for all nodes of that rank.

18. Next click the “Actinobacteria” node to select all nodes within
this branch (Fig. 2) (see Note 5).

19. Zoom closer into United Kingdoms. There should be two
markers present.

20. Click the Southernmost red marker near the Birmingham
University (Fig. 3).

21. We see the distributions of bacteria vs archaea and the external
links for this location mark. The project title: “Broiler Chicken
cecum microbial communities from the University of Birm-
ingham, UK,” suggests that this marker represents a study
concerning microbial sequences were taken from the Broiler
chicken cecum, of which the external links reveal to be true.

22. Click “Toggle Heatmap” button in the upper left corner and
set the background to the black and white setting (Fig. 4, also
see Note 6) to see a heat map representation of the microbial
distribution density.

26 Jesper Lund et al.

Fig. 3 Additional information on a specific, selected sample can be displayed by clicking on it in the map

2.2 Browsing
Surface-Specific
Distributions

The surface-specific maps are contributed by users together with
corresponding sequences and markers, with additional information
such as article references, links, and contributors (Fig. 5).

The maps behave like the world map, but with cartographical
backgrounds chosen by the creator based on the surface, it
represents, e.g. the skin of the human body. The markers of the
surface-specific maps are organized in the same way as the markers
from the geospatial map but only contain prokaryotic discovery
information. The taxonomic tree is used for filtering the respective
markers in the surface-specific map (see Subheading 2.1, Point 8).

The markers are colored based on the relative hit abundance,
gradienting from blue to white. The bluer a marker is, the higher
the number of hits in the phylogenetic tree. In addition to the
geospatial page setup, the surface-specific maps also contain a
listing of all markers, with names as described by the creator (listed
to the right of the map).

Microbial Distributional Analysis Using BioAtlas 27

Fig. 4 Black and white representation of the world map with heatmap overlay of microbial distribution
densities

Fig. 5 Graphical overview of the surface-specific user maps of the skin surface of a human female

We will not cover the surface-map creation process here
but only demonstrate how to use the tool (see Step 3)—a full
documentation is available online (https://bioatlas.compbio.sdu.
dk/tutorial).

1. To get started, click the “Browse maps” button in the main
menu bar to go to the custom map selection page (i.e., surface-
specific). On the front page, it is also featured as “Explore
usermaps,” under the “Get started” paragraph.

https://bioatlas.compbio.sdu.dk/tutorial
https://bioatlas.compbio.sdu.dk/tutorial

28 Jesper Lund et al.

Fig. 6 Searching for “Corynebacterium” (genus rank) in the taxonomic tree

2. At the “Browse maps” page select any map. In order to open
it click on the name or image.

3. Working example: Exploring the skin of a human female to
investigate the Corynebacterium (Genus rank: Corynebac-
terium) distribution

4. While on the “Browse maps” page scroll down to the map
named “Human Female,” and click on it.

5. The map is based on the study, “Molecular cartography of the
human skin surface in 3D” by Bouslimani et al. as indicated by
the link in the upper left corner of your browser.

6. Click the “Deselect All” button to the left just above the
taxonomic tree.

7. Filter the taxonomic tree by searching for “Corynebacterium”
and click the node at the genus level (Fig. 6).

8. After filtering, the markers have turned white, but some labels
are still colored in orange—meaning they have been hit (Fig. 7)
(see Note 7).

9. Click on the marker for the back of the female.
10. A popup window appears and shows which prokaryotes are

found at the position of this marker (Fig. 8). In our case, it
is only Corynebacteria.

2.3 Classifying
16s Ribosomal RNA
Sequences (with
Geospatial and
Surface-Specific
Mapped
Distributions)

The user may upload 16s ribosomal RNA sequences as FASTA
formatted flat file, which will be piped into the classification
procedure by BioAtlas and mapped to all surface-specific maps
as well as the geospatial world map (Fig. 9). For demonstration
purposes, we offer such a file with demo sequences online at the
BioAtlas web site. The classifier framework utilizes a scheduler,
allowing multiple users to interact with the system in parallel.
Running these “jobs” normally takes some minutes.

Microbial Distributional Analysis Using BioAtlas 29

Fig. 7 The “Human Female” map including markers. Orange labels: Markers with hits. Black labels: Markers
without hits

We here guide through this process using the demonstration
dataset consisting of 2000 actinobacterial sequences extracted from
GG as an example (Step 2).

1. To get started click “Dashboard,” and find the “Add new job”
button at the left (Fig. 9). At the front page it is also featured as
“Upload your own data” under the “Get started” paragraph.

2. Working example: Classification and mapping of the 2000
Actinobacteria 16s rRNA sequences (Phylum rank: Acti-
nobacteria), extracted from GG

3. On the classification setup page (Fig. 9) click the “Use test
dataset 1 (Actinobacteria)” radio button (see Note 8).

4. Click the “Submit job” button at the bottom.
5. After being directed to the dashboard, the scheduler should

state that it is running the job (Fig. 10).
6. When done, click the name (Fig. 11).

30 Jesper Lund et al.

Fig. 8 Popup window after clicking on the marker for the back part of the female skin surface map. Only
species of the genus Corynebacteria hit there

Fig. 9 Overview of the classification setup page

7. On the result page, the results of several analyses are shown:
The Mothur classification results (Fig. 12) as well as Kingdom,
species and taxonomic rank distributions (Figs. 13, 14, 15).

8. In addition to the classification and distributions, the geospatial
and the surface-specific maps are available, prefiltered based on
the classification results (see Note 9).

Microbial Distributional Analysis Using BioAtlas 31

Fig. 10 Scheduler currently running the classification job

Fig. 11 Classification job done

Fig. 12 Classification results from Mothur represented as a data table

9. At the top of the results page click “Geo-map.”
10. A version of the geospatial map with taxonomic tree and

markers filtered by the results will appear (see Note 10).

3 Notes

1. A map marker holds information such as:

• gold_biosample_id (GOLD biosample id): additional
information regarding the sample place, date of sampling,
and sample technology—among other things.

• gold_project (GOLD project): The GOLD project for
which the sample was taken. Note that one GOLD project
might hold a collection of one or more samples.

• img_taxon_id (IMG taxon id): Additional metadata,
both manually and automatically curated. BioAtlas also
provides links to RAW data stored at NCBI.

32 Jesper Lund et al.

Fig. 13 Kingdom distributions

Fig. 14 Species distributions

• Taxonomic rank distribution: The “active hits” for a
specific location refers to the number/ratio of hits among
the selected/filtered prokaryotes in the phylogenetic tree
mapping to that location. It is adjustable in font size by
the buttons next to the text. Several additional metadata
types such as Taxonomic rank distribution for bacteria vs.
archaea, longitude, latitude, and country can be displayed
as well.

Microbial Distributional Analysis Using BioAtlas 33

Fig. 15 Taxonomic rank distributions

2. This allows for comparing the relative abundance of prokary-
otes between the location markers. The button in the upper left
corner allows for switching between black/white and colored
background.

3. The tree resembles a phylogenetic tree of life and is based on
our integrated knowledge base for all prokaryotes found in all
locations.

4. Thus, if one deselects a node all children will also be deselected,
and vice versa.

5. The markers on the world map are filtered based on whether
or not they map bacteria from the lineage of Actinobacteria.

6. The overall representation of heat is clearest in the United
States of America, as most markers refer to sampling locations
US.

7. Orange coloring of the label characters of the markers means
that the marker has been hit during mapping—in contrast to
black markers, which mean no hit.

8. Fill out job name if desired. Use “Kmer-size” 8, “Cutoff” 80
and “Iterations” 100 (recommended settings).

9. Filtering is done by mapping the Mothur classification results
to the tree of life. If the prokaryotes from the mapping
results are not found within a specific, selected maps, they are
discarded in the visualization of the respective map.

10. The same holds for surface-specific maps by clicking on “User-
Map.”

34 Jesper Lund et al.

Acknowledgements

JBL is grateful for financial support from his VILLUM Young
Investigator Grant. Funding for open access charge: VILLUM
Young Investigator Grant of Jan Baumbach (Young Investigator
Grant nr. 13154).
JBL is grateful for financial support from his Velux Foundation
research grant (Research grant nr. 000121540), supporting his
Ph.D. project.

Conflict of Interest Statement None declared.

References

1. Berney C, Ciuprina A, Bender S, Brodie J,
Edgcomb V, Kim E, Rajan J, Parfrey LW, Adl
S, Audic S et al (2017) Unieuk: time to speak a
common language in protistology! J Eukaryot
Microbiol 64(3):407–411

2. Bouslimani A, Porto C, Rath CM, Wang M,
Guo Y, Gonzalez A, Berg-Lyon D, Ackermann
G, Christensen GJM, Nakatsuji T et al (2015)
Molecular cartography of the human skin sur-
face in 3d. Proc Natl Acad Sci 112(17):E2120–
E2129

3. Caporaso JG, Kuczynski J, Stombaugh J, Bit-
tinger K, Bushman FD, Costello EK, Fierer
N, Peña AG, Goodrich JK, Gordon JI
et al (2010) Qiime allows analysis of high-
throughput community sequencing data. Nat
Methods 7(5):335–336

4. Chaudhary N, Sharma AK, Agarwal P, Gupta
A, Sharma VK (2015) 16s classifier: a tool for
fast and accurate taxonomic classification of 16s
rRNA hypervariable regions in metagenomic
datasets. PLoS One 10(2):e0116106

5. Cole JR, Wang Q, Fish JA, Chai B, McGar-
rell DM, Sun Y, Brown CT, Porras-Alfaro
A, Kuske CR, Tiedje JM (2013) Riboso-
mal database project: data and tools for high
throughput rRNA analysis. Nucleic Acids Res
42(D1):D633–D642

6. de Queiroz K (1997) The linnaean hierarchy
and the evolutionization of taxonomy, with
emphasis on the problem of nomenclature.
Aliso J Syst Evol Bot 15(2):125–144

7. DeSantis TZ, Hugenholtz P, Larsen N, Rojas
M, Brodie EL, Keller K, Huber T, Dalevi D,
Hu P, Andersen GL (2006) Greengenes, a

chimera-checked 16s rRNA gene database and
workbench compatible with ARB. Appl Envi-
ron Microbiol 72(7):5069–5072

8. Giovannoni SJ, Britschgi TB, Moyer CL,
Field KG (1990) Genetic diversity in sar-
gasso sea bacterioplankton. Nature 345(6270):
60–63

9. Lund JB, List M, Baumbach J (2017) Interac-
tive microbial distribution analysis using bioat-
las. Nucleic Acids Res. https://doi.org/10.
1093/nar/gkx304

10. Markowitz VM, Chen IMA, Palaniappan K,
Chu K, Szeto E, Grechkin Y, Ratner A, Jacob
B, Huang J, Williams P et al (2011) Img:
the integrated microbial genomes database and
comparative analysis system. Nucleic Acids Res
40(D1):D115–D122

11. Mitchell A, Bucchini F, Cochrane G, Denise
H, Hoopen Pt, Fraser M, Pesseat S, Pot-
ter S, Scheremetjew M, Sterk P et al (2015)
Ebi metagenomics in 2016-an expanding and
evolving resource for the analysis and archiv-
ing of metagenomic data. Nucleic Acids Res
44(D1):D595–D603

12. Mizrahi-Man O, Davenport ER, Gilad Y
(2013) Taxonomic classification of bacterial 16s
rRNA genes using short sequencing reads: eval-
uation of effective study designs. PloS One
8(1):e53608

13. Pagani I, Liolios K, Jansson J, Chen IMA,
Smirnova T, Nosrat B, Markowitz VM, Kyrpi-
des NC (2011) The genomes online database
(gold) v. 4: status of genomic and metagenomic
projects and their associated metadata. Nucleic
Acids Res 40(D1):D571–D579

https://doi.org/10.1093/nar/gkx304
https://doi.org/10.1093/nar/gkx304

Microbial Distributional Analysis Using BioAtlas 35

14. Quast C, Pruesse E, Yilmaz P, Gerken J,
Schweer T, Yarza P, Peplies J, Glöckner FO
(2012) The silva ribosomal rna gene database
project: improved data processing and web-
based tools. Nucleic Acids Res 41(D1):D590–
D596

15. Schloss PD, Westcott SL, Ryabin T, Hall
JR, Hartmann M, Hollister EB, Lesniewski
RA, Oakley BB, Parks DH, Robinson CJ
et al (2009) Introducing mothur: open-source,

platform-independent, community-supported
software for describing and comparing micro-
bial communities. Appl Environ Microbiol
75(23):7537–7541

16. Yarza P, Yilmaz P, Pruesse E, Glöckner FO,
Ludwig W, Schleifer KH, Whitman WB,
Euzéby J, Amann R, Rosselló-Móra R (2014)
Uniting the classification of cultured and uncul-
tured bacteria and archaea using 16s rrna gene
sequences. Nat Rev Microbiol 12(9):635

Chapter 4

Generative Models for Quantification of DNA Modifications

Tarmo Äijö, Richard Bonneau, and Harri Lähdesmäki

Abstract

There are multiple chemical modifications of cytosine that are important to the regulation and ultimately
the functional expression of the genome. To date no single experiment can capture these separate
modifications, and integrative experimental designs are needed to fully characterize cytosine methylation
and chemical modification. This chapter describes a generative probabilistic model, Lux, for integrative
analysis of cytosine methylation and its oxidized variants. Lux simultaneously analyzes partially orthogonal
bisulfite sequencing data sets to estimate proportions of different cytosine methylation modifications and
estimate multiple cytosine modifications for a single sample by integrating across experimental designs
composed of multiple parallel destructive genomic measurements. Lux also considers the variation in
measurements introduced by different imperfect experimental steps; the experimental variation can be
quantified by using appropriate spike-in controls, allowing Lux to deconvolve the measurements and
recover accurately the underlying signal.

Key words DNA methylation, Bayesian analysis, Hierarchical generative modeling, 5-methylcytosine
oxidation, Bisulfite sequencing, BS-seq/oxBS-seq/TAB-seq/fCAB-seq/CAB-seq/redBS-seq/
MAB-seq

1 Introduction

Epigenetic modification of cytosine (C), 5-methylcytosine (5mC),
and its oxidation products 5-hydroxymethylcytosine (5hmC), 5-
formylcytosine (5fC), and 5-carboxylcytosine (5caC) play a role in
regulation and organization of the genome (and ultimately health)
through many pathways [1–3]. Epigenetic modification of cytosine
governs active demethylation via thymine DNA glycosylase-
dependent base excision repair [4], and these modifications can
serve as distinct epigenetic markers recognized by marker-specific
regulatory interactions (e.g., many transcription factors have
methylation responsive binding sites) [5, 6]. In order to study
these different pathways and their role in health, an accurate
and comprehensive estimation of methylation levels is required.
Here, we describe a generative probabilistic model motivated by

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_4, © Springer Science+Business Media, LLC, part of Springer Nature 2018

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_4&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_4

38 Tarmo Äijö et al.

experimental protocols and its use for analyzing bisulfite-based
sequencing data [7, 8]. The explicit modeling of experimental
variation together with proper spike-in control allows accurate
estimation of parameters and accompanied uncertainties through
Bayesian analysis [7, 8]. The explicit probabilistic model also
provides clear routes for integration of other data types and for
correction of other aspects of experimental design as future work.

We describe the usual analysis workflow of BS-seq and oxBS-
seq data using Lux, containing all the analysis steps starting from
raw sequencing reads ending to methylation estimates and calling
of differentially methylated cytosines. Our method is composed of
the following steps: (i) quality control of raw bisulfite sequencing
reads, (ii) mapping of bisulfite reads and extraction of bisulfite
conversion frequencies, (iii) preparation of inputs for Lux, (iv)
running Lux analysis, and (v) inspection of methylation level
estimates and detection of differentially methylated cytosines. In
addition, we present our recommended quality control procedures
along the description of the analysis workflow.

2 Materials

2.1 Bisulfite
Sequencing

Bisulfite sequencing (BS-seq) and its variants have been widely used
to probe cytosine methylation [9]. For instance, BS-seq distin-
guishes 5mC and 5hmC from C, 5fC, and 5caC through selective
deamination of C, 5fC, and 5caC to produce uracil by sodium
bisulfite, whereas 5mC and 5hmC are protected from the con-
version [10]. Different variations of BS-seq protocol change the
conversion landscape for differential separation of cytosine modifi-
cations [11–16], such as oxidative bisulfite sequencing (oxBS-seq)
that separates 5hmC from 5mC by oxidization of 5hmC to
5fC prior to sodium bisulfite treatment [11]. Importantly, each
sample has to be assayed with multiple experimental protocols (BS-
seq, oxBS-seq, etc.) for comprehensive quantification of cytosine
methylation modifications. Finally, these different variants of BS-
seq involve sensitive and imperfect chemical reactions, potentially
leading to experiment-specific biases.

2.2 A Generative
Probabilistic Model
of Bisulfite
Sequencing-Based
Assays

To define the effects of experimental steps of bisulfite-based
protocols on outcomes, we utilize tree diagrams whose structures
represent the sequential steps of the experimental protocols. The
layers in the model represent the compounded effect of the
sequential steps on the signal. To illustrate this in practice, we
consider the oxBS-seq protocol in Fig. 1. Briefly, the considered
chemical reactions are the events that lead to the branching of the

Quantification of DNA Modifications 39

p(
ox

ef
f)

1

1

1

1

T

C

C

5fC

5caC

5mC

C

5fC

5caC

5mC

5hmC

U

C

5hmC
1-p(oxeff)

p(BSeff)

1-p(BSeff)

*1-p(BSeff)

p(BSeff)
*

1-p(seqerr)

1-p(seqerr)

p(seqerr)

p(C)

p(5fC)

p(5caC)

p(5mC)

p(5hmC)

Sampling of
methylation
modification

Oxidation
by KRuO4

Bisulfite
conversion

Sequencing

Fig. 1 The different steps of the oxBS-seq protocol are illustrated. The possible
transitions are stated in the terms of the experimental parameters; for instance,
p(oxeff) is the probability that a given 5hmC is oxidized to 5fC by KRuO4.
Transitions representing successful and unsuccessful chemical reactions are
colored with green and red, respectively

tree representing the possible outcomes, leading finally to the leaf
nodes, which are either C (not converted) or T (converted) out-
comes. For instance, the parameter p(oxeff) defines the probability
of successful oxidation of 5hmC to 5fC, and the probability of
the other possible outcome, unsuccessful oxidation, is 1-p(oxeff).
Notably, the oxBS-seq diagram reverts to the BS-seq diagram when
the oxidation step is discarded (p(oxeff) = 0).

The probabilities p(C), p(5mC), p(5hmC), p(5fC), and
p(5caC) represent the sample-specific methylation distribution per
cytosine (p(C) + p(5mC) + p(5hmC) + p(5fC) + p(5caC) = 1),
which in the end we wish to estimate. In the case of perfect
experiments, the probability of obtaining C readout, pc, would be
completely defined by the underlying methylation distribution of
a given cytosine. However, in the case of imperfect experiments,
the success rates of chemical reactions will affect the outcomes; for
instance, low bisulfite conversion rate will increase the number of
C outcomes (Fig. 1).

Using the law of conditional probability, the probability of a
series of events occurring, leading to a given leaf nodes in Fig. 1,
is equal to the product of the leaf node probability and its parent
nodes’ probabilities. For example, consider a series of events where
(i) a hydroxymethylated cytosine (5hmC) is chosen from a sample,
(ii) 5hmC is correctly oxidized to 5fC by KRuO4, (iii) 5fC is
correctly converted to uracil by sodium bisulfite treatment, and

40 Tarmo Äijö et al.

(iv) the uracil is correctly read as a thymine (T) during sequencing:
the probability of such a series of events is

p (5hmC) p (oxeff) p (BSeff)
(
1 − p

(
seqerr

))
.

Similarly, consider the series of events as above with an
exception that the uracil is incorrectly read as cytosine (C): the
probability of such a series of events is

p (5hmC) p (oxeff) p (BSeff) p
(
seqerr

)
.

By applying the law of total probabilities, we can state the
probability of different final outcomes (C and T) by collapsing all
the series of events that lead to the particular outcome [7]. These
total probabilities are used to calculate the likelihood of data under
binomial model.

2.3 Likelihood
Model for Bisulfite
Sequencing Data

Different bisulfite-based sequencing assays reveal only whether a
cytosine was converted (T) or not (C) in the experiment (following
specific chemical treatments or sequences of treatment specific to
a given C-methylation-type specific assay); therefore a single out-
come (C or T per cytosine per read) can be modeled as a Bernoulli
random variable, Y∼Bernoulli(pc), where pc is the probability for
the C outcome from a given assay. If we assume that outcomes
(reads) per cytosine are independent and identically distributed,
then the number of C (not converted) outcomes in N out-
comes, NC , is a binomial random variable, NC∼Binomial(pc,N).
If different bisulfite-based methylation assays, such as BS-seq and
oxBS-seq, are applied to the same biological sample, then we can
safely assume that the underlying methylation levels are the same
in these different BS-seq and oxBS-seq experiments. This implies
that random variables, NC, from different assays are conditionally
independent given assay-specific parameters pc and the methylation
distribution, p(C), p(5mC), p(5hmC), p(5fC), and p(5caC), thus
allowing us to estimate different methylation modifications from a
combination of assays.

2.4 Model
Inference

Let us first consider the combination of BS-seq and oxBS-seq assays
to estimate the levels and locations of C, 5mC, and 5hmC modi-
fications in a single sample. To estimate the values of the sample-
specific experimental parameters, p(oxeff), p(BSeff), p(BS*

eff), and
p(seqerr), we and others have developed an approach in which DNA
controls (sequences different from host genome) with known
methylation distribution are spiked into the samples [7, 8, 17].
Next when analyzing the sequencing data, we incorporate strong
prior knowledge on the methylation status of the DNA controls to
enable calibration of the experimental parameters. Simultaneously,
the calibrated experimental parameters enable accurate estimation

Quantification of DNA Modifications 41

of the methylation distributions of the wild-type cytosines. In
statistical terms, we assign prior distributions for all the parameters
and derive the posterior distributions over them conditioned on the
data; the posterior distributions are estimated using a Hamiltonian
Monte Carlo (HMC) approach with the No-U-Turn Sampler
(NUTS) [18–20] as implemented in a Stan program.

3 Methods

3.1 Quality
Control
of Sequencing
Reads

We recommend doing quality control of sequencing reads prior
to read mapping using FastQC [21] or similar tools. This quality
control step will reveal if there are any overrepresented sequences
such as adapters, which should be removed before mapping, or
whether base calling error rates are higher than normal, especially
toward the end of the sequences, in which case we recommend
trimming the raw sequence reads. Notably, thymines are expected
to be overrepresented over cytosines due to the bisulfite conversion
of unmethylated cytosines.

3.2 Reference
Genome
Specification
and Index Building

The pipeline described here uses Bismark to map bisulfite sequenc-
ing reads [22]. The reference genome sequence used in mapping
the sequencing reads has to contain the host genome sequence
and the template sequences of the incorporated DNA controls.
To do this, we incorporate the control sequence templates in the
FASTA file containing the host genome. Then, we prepare two
bisulfite converted versions of the reference genome in which
either C → T or G → A conversions are done and build
corresponding Burrows-Wheeler indices for the Bowtie 2 mapping
(bismark_genome_preparation) (see Note 1). Note that this step
has to be done only once per host genome and control sequences
combination.

3.3 Sequence
Read Mapping

The Burrows-Wheeler indices prepared in the previous step are
used in the mapping of the bisulfite-based sequence reads. Similar
to the reference genome construction, first the reads are fully
converted to allow mapping against the reference genomes (C → T
and G → A) while keeping track which bases were converted so
that afterward we can tell which bases were converted (C → T)
in the assay (bismark). It is important to specify in the mapping
whether the sequencing libraries are directional or nondirectional.
Each sequencing sample will be mapped separately.

3.4 Bisulfite
Conversion
Frequency
Extraction

After mapping the reads, we quantify the frequencies of observing
converted and non-converted reads at the level of single cytosine
from the Bismark alignment output for each sample. To do this,
we use the bismark_methylation_extractor script distributed with
the Bismark software. We recommend extracting counts for all

42 Tarmo Äijö et al.

the cytosines independent of the context (CpG/CHG/CHH)
(--counts --CX) (see Note 2). We highly recommend using the
bedGraph output (--bedGraph), which makes it easy to collect
count data over multiple samples.

3.5 Input
Preparation for Lux
Analysis

Lux requires number of C and total (C + T) readouts per cytosine
per sample, which can be parsed easily from the bedGraph output
files as the chromosome and chromosomal position information
together with the counts are provided (bedtools) [23]. Addition-
ally, prior information on methylation levels, specifically vital for
control cytosines, has to be supplied. Altogether, four files should
be generated; we will describe the files in detail below:

(a) Count data format

Control and wild-type cytosines data are stored in separate files
(e.g., control_data.tsv and data.tsv). Replicate-specific bisulfite-
based data are grouped together; for instance, data from BS-seq
and oxBS-seq assays per cytosine and replicate are represented
by quadruplet of integers (NC from BS, N from BS, NC from
oxBS, N from oxBS). Each control and wild-type cytosine has to
be present in every considered replicate. Data are stored in tab-
separated values files where each cytosine (see Note 3) has its own
line; i.e., control_data.tsv and data.tsv have as many lines as there
are control and wild-type cytosines, respectively. Each replicate is
represented by aforementioned quadruplet; for instance, in the case
of four replicates, each row has 16 integers separated by tabs.

(b) Prior data format

The prior information over the control cytosines is supplied
through Dirichlet priors in terms of pseudo-counts. Pseudo-counts
are defined in tab-separated values file (e.g., control_prior.tsv) in
which each control cytosine has its own line; the same prior is
assumed for each of the replicate. In the case of BS-seq and
oxBS-seq assays, our methylation variables have three dimensions
(as C, 5fC, and 5caC cannot be distinguished from each other),
and thus we define prior over p(C or 5fC or 5caC), p(5mC),
and p(5hmC). That is, each row has three positive numbers that
represent pseudo-counts for p(C or 5fC or 5caC), p(5mC), and
p(5hmC) in that order. We express our prior knowledge that the
C and 5mC controls are stable and relatively pure, whereas 5hmC
controls are less pure and exhibit greater variation (Table 1).

Also, wild-type cytosines require prior distribution on methy-
lation levels. The format of the file (e.g., prior.tsv) is identical
to the format of the prior file for control cytosines. Each wild-
type cytosine requires its own prior definition, but in most cases
identical priors are assumed across cytosines, and the same priors
are used across replicates. In the case of BS-seq and oxBS-seq
assays, we define prior information on p(C or 5fC or 5caC),

Quantification of DNA Modifications 43

Table 1
Pseudo-counts for different methylation control oligonucleotides

C control 5mC control 5hmC control

Pseudo-counts α = [1000, 1, 1] α = [1, 1000, 1] α = [6, 2, 72]

The listed values are pseudo-count parameters of Dirichlet distribution; the means
of the distributions are αi/�α. The 5hmC control cytosines are assumed to be less
pure than the C and 5mC control cytosines

p(5mC), and p(5hmC). Each row has three positive numbers that
represent pseudo-counts for p(C or 5fC or 5caC), p(5mC), and
p(5hmC) in that order. We use a relatively uninformative prior,
that is, ([p(C or 5fC or 5caC), p(5mC), p(5hmC)]∼Dirichlet(α),
where α = [0.8, 0.8, 0.8]) (see Notes 4 and 5). The file should
have as many rows as there are wild-type cytosines.

3.6 Running Lux (a) Installing Stan

The Python interface to Lux described in this note uses PyStan
[24] to access Stan computation. In addition to PyStan, also
NumPy and SciPy have to be installed; we recommend using pip
to install the required Python modules (pip install pystan
numpy scipy).

In addition, we recommend installing the stansummary script
that is part of the CmdStan distribution [25]. The script stansum-
mary can be used to summarize output files from Lux analysis.

(b) Running Lux

Running Lux using our PyStan wrapper [26] is straightforward, as
PyStan will carry out the model compilation, input data transfer,
and results collection. Lux analysis can be executed by a single
command after the input files have been prepared as described
above:
python lux.py –d data.tsv –p prior.tsv \
–cd control_data.tsv \
–cp control_data.tsv \
–o ./output.csv

in which we have defined the names of input files and
output file as command-line arguments. By default, 4 chains
and 2000 iterations per chain are run (see Note 6). When
the analysis is completed, there will be files (./output_0.csv,
./output_1.csv, ./output_2.csv, and ./output_3.csv) containing
posterior samples including warm-up samples for the parameters
per chain. Importantly, one should always inspect whether
HMC simulations have converged; this can be done by running
the stansummary script (e.g., $STAN_HOME/bin/stansummary
output_0.csv output_1.csv output_2.csv output_3.csv)
and studying the Rhat values (Rhat values should be <1.1) [27]

44 Tarmo Äijö et al.

(see Note 7). When necessary, computational complexity can be
reduced (see Note 8).

The output files can be read directly in Python (e.g.,
pandas.read_csv(‘output_0.csv’,comment=‘#’)) or R
(e.g., read.csv(‘output_0.csv’,comment.char=‘#’)); note
that when using general-purpose CSV readers, one should discard
the warm-up samples (by default the first half) before running
further analysis. We also provide a programmatic access to the Lux
calculation (see Note 9).

(c) Inspection of estimated values of experimental parameters

The first thing to do after the analysis is finished is to
check the estimated values of the experimental parameters per
sample. The variables bsEff, oxEff, bsBEff, and seqErr denote
bisulfite conversion efficiency (p(BSeff)), oxidation efficiency
(p(oxeff)), inaccurate bisulfite conversion efficiency (p(BS*

eff)),
and sequencing error probability (p(seqerr)), respectively (see also
Fig. 1). To study the estimated experimental parameters, we can
use the stansummary script (e.g., $STAN_HOME/bin/stansummary
output_0.csv output_1.csv output_2.csv output_3.csv),
which will summarize the posterior samples per parameter
and print the summary to standard output. Examples of
estimated posterior distributions of experimental parameters from
experimental data [8] are illustrated in Fig. 2. Ideally, probabilities
for inaccurate bisulfite conversion of 5mC and 5hmC (bsBEff) and
sequencing error (seqErr) should be small (∼10−3–10−2), whereas
the probabilities for bisulfite conversion (bsEff) should be close to
1 and the probabilities for oxidation of 5hmC (oxEff) should be
closer to 1 than 0; we usually see oxEff varying between 0.7 and
0.95. For instance, estimated oxidation efficiency values would be
close to zero if BS-seq and oxBS-seq samples were mislabeled.
Importantly, unexpected or highly variable between samples
experimental parameter values might suggest that something
has gone wrong with the experiment, and thus the experimental
procedures should be checked and optimized.

(d) Inspection of methylation estimates

The stansummary call mentioned above will also print information
on methylation distributions. We recommend starting by
comparing the methylation estimates of the control cytosines
(theta_control) with their expected values (prior knowledge,
αi/�α). Examples of estimated methylation levels of control
cytosines from experimental data [8] are shown in Fig. 3; these
three control cytosines behave as expected across three samples. If
the estimated values are far from expected, then that might suggest

Quantification of DNA Modifications 45

0.980 0.990 1.000
0

200

400

0.80 0.90 1.00
0

50

100

0.00 0.04 0.08
0

200

400

0.000 0.010 0.020
0

200

400
P

os
te

rio
r p

ro
ba

bi
lit

y
de

ns
ity

p(oxeff)p(BSeff)

p(seqerr)p(BS*
eff)

Replicate #1
Replicate #2
Replicate #3

Fig. 2 Variation in experimental parameters, bisulfite conversion efficiency (top
left), oxidation efficiency (top right), inaccurate bisulfite conversion (bottom left),
and sequencing error (bottom right), between samples is illustrated. In this
example, three samples are considered. The densities are estimated using a
kernel density estimation on the posterior samples

0.990 1.000
0

200

400

0.990 1.000
0

200

400

0.8 1.0
0

20

40
Replicate #1
Replicate #2
Replicate #3

p(C) p(5mC) p(5hmC)
0.995 0.995 0.9P

os
te

rio
r p

ro
ba

bi
lit

y
de

ns
ity C control cytosine 5mC control cytosine 5hmC control cytosine

Fig. 3 Variation in methylation in control cytosines is illustrated. In this example, three control cytosines (C in
left, 5mC in middle, and 5hmC in left) and three samples are considered. For each control cytosine, only its
main methylation modification level is visualized; e.g., in the case of 5hmC control cytosine, only 5hmC level is
visualized (third panel). The densities are estimated using a kernel density estimation on the posterior samples

that something has gone wrong in the experiment; for instance,
synthesis of control oligonucleotides could have failed, or there is
a mismatch between data and prior.

Next, we study the methylation distributions of wild-type
cytosines (theta) per sample. Usually, most of the cytosines are
either nearly fully unmethylated (C level is ∼1) or methylated
(5mC level is ∼1). Only a small subset of cytosines, depending on
the studied cell types, express 5hmC, usually at low levels (from
∼0.1 to ∼0.3). Unexpectedly high 5hmC levels could be due
to mislabeling of BS-seq and oxBS-seq samples (e.g., p(oxeff) is

46 Tarmo Äijö et al.

low in this case); especially, this should be checked if the signal
is observed only in one experiment. It is worthwhile to check
methylation levels at group level (mu). Additionally, unexpected
methylation levels can be due to C → T mutations. Finally, it
is often informative to visualize methylation distributions across
chromosomes.

3.7 Differential
Methylation
Detection

Bayes factor analysis quantifies the relative evidence for one model
compared to another model [28]. In our setting, the two con-
sidered models correspond to the cases of similar and differential
methylation. We utilize the Savage-Dickey density ratio to approx-
imate Bayes factors for detecting significant changes between
methylation level distributions between conditions using group-
level estimates (mu) [7, 29]. Briefly, the Savage-Dickey density
ratio quantifies how different methylation distributions between a
pair of conditions are before (a priori) and after (a posteriori) data.
The a priori difference can be calculated analytically [7], but the
a posteriori difference is approximated from the posterior samples
using a kernel density estimation approach [7]. The provided
script bf.py (bf.py –c1 output_c1_0.csv output_c1_1.csv
output_c1_2.csv output_c1_3.csv –c2 output_c2_0.csv
output_c2_1.csv output_c2_2.csv output_c2_3.csv) takes
chain output files for two conditions as input and calculates and
reports approximate Bayes factor for each of the cytosines. Note
that the script bf.py discards warm-up samples automatically. We
also provide a programmatic access to the Bayes factor calculation
(see Note 10).

Differentially methylated cytosines can be defined as those that
have Bayes factor greater than a specific threshold. For example,
Jeffreys’ interpretation of Bayes factors [30] can be used to guide
the choice of the threshold value (see Table 2). Instead of using
any specific cutoff, Bayes factors can be simply used to rank
the findings. Then the comprehensive biological interpretation of
the methylation changes can begin for identifying active epige-
netic regulation of gene expression. For instance, the cytosines
expressing differential methylation are putative regulatory regions
through which transcriptional regulation takes place [31, 32].
However, relating changes in methylation to phenotypes usually
requires other data [33].

4 Notes

1. Bismark can be defined to use Bowtie instead of Bowtie 2. In
this case, the reference genome indices have to be constructed
for Bowtie (bismark_genome_preparation --bowtie1). Addi-
tionally, Bismark has to be defined to use Bowtie instead of
Bowtie 2 in mapping (bismark --bowtie1).

Quantification of DNA Modifications 47

Table 2
Jeffreys’ interpretation of Bayes factors (log10) is given in the table

Strength of evidence

Negative Barely worth mentioning Substantial Strong Very strong Decisive

log10(BF) <0 0–1/2 1/2–1 1–3/2 3/2–2 >2

Bayes factors quantify the relative strength of evidence that the data provide for the alternative hypothesis against
the null hypothesis. Therefore, Bayes factors can be used in model selection and differential methylation detection

2. Computation and memory requirements are lower if only the
cytosines in CpG context are considered (the argument --CX
is not defined). Depending on the application and biological
question, focusing on the CpG cytosines, where most of
the cytosine methylation is located, might be a reasonable
approach.

3. In the case of low sequencing depth, counts from different
strands representing a single CpG dinucleotide could be
pooled to increase statistical power. However, the pooling will
lead to non-strand-specific CpG methylation estimates.

4. If sequencing depth is low, then it might be useful to change
the hyperparameter (α) controlling the prior for wild-type
cytosine methylation. The rationale would be to make the
prior less informative, and consequently, the experimental
data will have more weight. However, at the limit (Jeffrey’s
prior), the Savage-Dickey density ratio is not applicable.

5. The Savage-Dickey approximation uses the methylation prior
distribution to calculate the a priori methylation distribu-
tion differences. Moreover, the Savage-Dickey approximation
involves calculating the ratio between a priori and a posteri-
ori densities. Thus, the approximated Bayes factors depend
directly on the prior distribution. In principle, less informative
(i.e., probability mass is distributed more widely) priors will
lead to greater Bayes factors.

6. When desired, number of chains and number of iterations per
chain can be specified using command-line arguments --iter
(or -i) and --chains (or -n), respectively.

7. In order to reach convergence, one should try to increase the
number of iterations per chain, for instance, by doubling the
number of iterations until convergence is reached.

8. The simultaneous estimation of experimental parameters and
methylation distributions in genome--wide setting might be
computationally too expensive. Therefore, in these cases,
we recommend a two--step approach: first, the experimen-
tal parameter posterior distributions are estimated without
considering any wild-type cytosine data, and second, wild-

48 Tarmo Äijö et al.

type cytosine data is analyzed using either point estimates
of experimental parameters (when the corresponding distri-
butions are tight) or approximated parametric forms of the
posterior distributions (when the corresponding distributions
are not tight). Additionally, distributed computing can be
used to speed up the analysis by distributing the computation
of distinct sets of cytosines.

9. Some users might find that the RStan and PyStan inter-
faces provide more integrated workflows than CmdStan. For
instance, handling of input data and visualization (see, e.g.,
BayesPlot and ShinyStan) could be done directly in Python
or R. We provide functions for generating inputs from arrays
for Lux, running Lux, and calculating Bayes factors for use in
Python.

10. Let us assume we have input (count and prior) for two
conditions, a and b, and we wish to compare them. Moreover,
assume that the data is stored in the same format as described
above in the following NumPy arrays: counts_a, prior, con-
trol_counts_a, control_prior_a, counts_b, control_counts_b,
and control_prior_b. Then, we can generate the required
input variables, run the Lux analysis, and calculate the Bayes
factors as follows:

import some routines from lux
from lux import generate_inputs, run_lux, \

calculate_bayes_factors

generate data and init variables for A and B conditions
from input data for lux
data_a,init_a = generate_inputs(counts_a,prior, \
control_counts_a, control_prior_a,from_files=False)
data_b,init_b = generate_inputs(counts_b,prior, \
control_counts_b, control_prior_b,from_files=False)

run Lux analysis for A and B conditions
fit_a,samples_a = run_lux(data_a,init_a,iter=2000, \
chains=4, sample_file=’./output_a.csv’)

fit_b,samples_b = run_lux(data_b,init_b,iter=2000, \
chains=4, sample_file=’./output_b.csv’)
calculate Bayes factors
bfs = calculate_bayes_factors(samples_a[‘mu’], \

samples_b[‘mu’])

Note that the extract method we use in the run_lux
routine automatically discards the warm-up samples; i.e.,
samples_a and samples_b are ready to be used.

Quantification of DNA Modifications 49

References

1. Kohli RM, Zhang Y (2013) TET
enzymes, TDG and the dynamics of DNA
demethylation. Nature 502(7472):472.
https://doi.org/10.1038/nature12750

2. Pastor WA, Aravind L, Rao A (2013)
TETonic shift: biological roles of TET pro-
teins in DNA demethylation and transcrip-
tion. Nat Rev Mol Cell Biol 14(6):341.
https://doi.org/10.1038/nrm3589

3. Wu X, Zhang Y (2017) TET-mediated active
DNA demethylation: mechanism, function and
beyond. Nat Rev Genet 18(9):517–534

4. Shen L, Wu H, Diep D, Yamaguchi S,
D’Alessio AC, Fung H-L et al (2013)
Genome-wide analysis reveals TET-and TDG-
dependent 5-methylcytosine oxidation dynam-
ics. Cell 153(3):692–706

5. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder
T, Jansen PW, Bauer C (2013) Dynamic
readers for 5-(hydroxy)methylcytosine and its
oxidized derivatives. Cell 152(5):1146–1159.
https://doi.org/10.1016/j.cell.2013.02.004

6. Yin Y, Morgunova E, Jolma A, Kaasinen
E, Sahu B, Khund-Sayeed S et al (2017)
Impact of cytosine methylation on DNA
binding specificities of human transcription
factors. Science 356(6337):eaaj2239. http://
www.sciencemag.org/lookup/doi/10.1126/
science.aaj2239

7. Äijö T, Huang Y, Mannerström H, Chavez L,
Tsagaratou A, Rao A et al (2016) A probabilis-
tic generative model for quantification of DNA
modifications enables analysis of demethylation
pathways. Genome Biol 17(1):49. https://
doi.org/10.1186/s13059-016-0911-6

8. Äijö T, Yue X, Rao A, Lähdesmäki H (2016)
LuxGLM: a probabilistic covariate model for
quantification of DNA methylation modifica-
tions with complex experimental designs. Bioin-
formatics 32(17):i511–i519

9. Plongthongkum N, Diep DH, Zhang K
(2014) Advances in the profiling of DNA
modifications: cytosine methylation and
beyond. Nat Rev Genet 15(10):647–661.
https://doi.org/10.1038/nrg3772

10. Huang Y, Pastor WA, Shen Y, Tahiliani
M, Liu DR, Rao A (2010) The behaviour
of 5-hydroxymethylcytosine in bisulfite
sequencing. PLoS One 5(1):e8888. https://
doi.org/10.1371/journal.pone.0008888

11. Booth MJ, Branco MR, Ficz G, Oxley D,
Krueger F, Reik W (2012) Quantitative
sequencing of 5-methylcytosine and 5-

hydroxymethylcytosine at single-base
resolution. Science 336(6083):934–937.
https://doi.org/10.1126/science.1220671

12. Yu M, Hon GC, Szulwach KE, Song CX,
Zhang L, Kim A (2012) Base-resolution
analysis of 5-hydroxymethylcytosine in the
mammalian genome. Cell 149(6):1368–1380.
https://doi.org/10.1016/j.cell.2012.04.027

13. Song CX, Szulwach KE, Dai Q, Fu Y,
Mao SQ, Lin L (2013) Genome-wide pro-
filing of 5-formylcytosine reveals its roles
in epigenetic priming. Cell 153(3):678–691.
https://doi.org/10.1016/j.cell.2013.04.001

14. Booth MJ, Marsico G, Bachman M, Beraldi
D, Balasubramanian S (2014) Quantitative
sequencing of 5-formylcytosine in DNA at
single-base resolution. Nat Chem 6(5):435–
440. https://doi.org/10.1038/nchem.1893

15. Lu X, Song CX, Szulwach K, Wang Z,
Weidenbacher P, Jin P (2013) Chemical
modification-assisted bisulfite sequencing
(CAB-Seq) for 5-carboxylcytosine detection in
DNA. J Am Chem Soc 135(25):9315–9317.
https://doi.org/10.1021/ja4044856

16. Wu H, Wu X, Shen L, Zhang Y (2014)
Single-base resolution analysis of active DNA
demethylation using methylase-assisted bisul-
fite sequencing. Nat Biotechnol 32(12):1231–
1240. https://doi.org/10.1038/nbt.3073

17. Yu M, Hon GC, Szulwach KE, Song C-X,
Jin P, Ren B et al (2012) Tet-assisted bisulfite
sequencing of 5-hydroxymethylcytosine. Nat
Protoc 7(12):2159–2170. https://doi.org/
10.1038/nprot.2012.137

18. Carpenter B, Gelman A, Hoffman MD, Lee D,
Goodrich B, Betancourt M et al (2017) Stan:
a probabilistic programming language. J Stat
Softw 76(1):1–32. https://www.jstatsoft.org/
v076/i01

19. Hoffman MD, Gelman A (2014) The No-U-
turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. J Mach Learn Res
15(1):1593–1623

20. Gelman A, Carlin JB, Stern HS, Dunson DB,
Vehtari A, Rubin DB (2013) Bayesian data
analysis, 3rd edn. Taylor & Francis. (Chap-
man & Hall/CRC Texts in Statistical Sci-
ence), London. https://books.google.com/
books?id=ZXL6AQAAQBAJ

21. Andrews S (2010) FastQC: a quality con-
trol tool for high throughput sequence
data [Internet]. http://www. bioinformat-
ics.babraham.ac.uk/projects/fastqc/

http://dx.doi.org/10.1038/nature12750
http://dx.doi.org/10.1038/nrm3589
http://dx.doi.org/10.1016/j.cell.2013.02.004
http://www.sciencemag.org/lookup/doi/10.1126/science.aaj2239
http://dx.doi.org/10.1186/s13059-016-0911-6
http://dx.doi.org/10.1038/nrg3772
http://dx.doi.org/10.1371/journal.pone.0008888
http://dx.doi.org/10.1126/science.1220671
http://dx.doi.org/10.1016/j.cell.2012.04.027
http://dx.doi.org/10.1016/j.cell.2013.04.001
http://dx.doi.org/10.1038/nchem.1893
http://dx.doi.org/10.1021/ja4044856
http://dx.doi.org/10.1038/nbt.3073
http://dx.doi.org/10.1038/nprot.2012.137
https://www.jstatsoft.org/v076/i01
https://books.google.com/books?id=ZXL6AQAAQBAJ
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

50 Tarmo Äijö et al.

22. Krueger F, Andrews SR (2011) Bismark: a flex-
ible aligner and methylation caller for bisulfite-
Seq applications. Bioinformatics 27(11):1571–
1572. https://doi.org/ 10.1093/bioinformat-
ics/btr167

23. Quinlan AR, Hall IM (2010) BEDTools: a flex-
ible suite of utilities for comparing genomic fea-
tures. Bioinformatics 26(6):841–842. https://
doi.org/10.1093/bioinformatics/btq033

24. Stan Development Team (2017) PyStan: the
Python interface to Stan [Internet]. http://mc-
stan.org

25. Stan Development Team (2017) CmdStan: the
command-line interface to Stan

26. Äijö T, Mannerström H (2017) Lux: an inte-
grative hierarchical Bayesian modeli for analyz-
ing bisulphite based sequencing data [Internet].
https://github.com/tare/Lux/

27. Gelman A, Rubin DB (1992) Inference
from iterative simulation using multiple
sequences. Stat Sci 7(4):457–472. http://
projecteuclid.org/euclid.ss/1177011136

28. Kass RE, Raftery AE (1995) Bayes factors. J Am
Stat Assoc 90(430):773–795

29. Dickey JM (1971) The weighted likelihood
ratio, linear hypotheses on normal location
parameters. Ann Math Stat 42(1):204–223

30. Jeffreys H (1998) Theory of probability, 3rd
edn. Oxford University Press, New York, p
xii+459; (Oxford Classic Texts in the Physical
Sciences)

31. Hon GC, Rajagopal N, Shen Y, McCleary
DF, Yue F, Dang MD et al (2013) Epigenetic
memory at embryonic enhancers identified
in DNA methylation maps from adult mouse
tissues. Nat Genet 45(10):1198–1206. http:/
/www.nature.com/doifinder/10.1038/
ng.2746

32. Tsagaratou A, Äijö T, Lio C-WJ, Yue X, Huang
Y, Jacobsen SE et al (2014) Dissecting the
dynamic changes of 5-hydroxymethylcytosine
in T-cell development and differentiation.
Proc Natl Acad Sci 111(32):E3306–E3315.
http://www.pnas.org/cgi/doi/10.1073/
pnas.1412327111

33. Ritchie MD, Holzinger ER, Li R, Pendergrass
SA, Kim D (2015) Methods of integrating
data to uncover genotype–phenotype
interactions. Nat Rev Genet 16(2):85–97.
http://www.nature.com/doifinder/10.1038/
nrg3868

http://dx.doi.org/10.1093/bioinformatics/btr167
http://dx.doi.org/10.1093/bioinformatics/btq033
http://mc-stan.org
https://github.com/tare/Lux/
http://projecteuclid.org/euclid.ss/1177011136
http://www.nature.com/doifinder/10.1038/ng.2746
http://www.pnas.org/cgi/doi/10.1073/pnas.1412327111
http://www.nature.com/doifinder/10.1038/nrg3868

Chapter 5

DiMmer: Discovery of Differentially Methylated Regions
in Epigenome-Wide Association Study (EWAS) Data

Tobias Frisch, Jonatan Gøttcke, Richard Röttger, Qihua Tan,
and Jan Baumbach

Abstract

DNA-methylation has a strong influence on gene expression such that differences in methylation are
associated with a wide range of diseases. Array-based approaches like the Illumina 450 K or 850 K EPIC
chips have been used in a wide range of studies mostly comparing a disease group with healthy control,
but also to correlate with survival times, for instance. Processing, normalization, and analysis of raw
data require extensive knowledge in statistics and programming languages such as R. Here we introduce
DiMmer, an easy-to-use Java tool for the analysis of EWAS. A graphical user interface guides the user
through preprocessing, normalization, testing for differentially methylated CpGs, and finally the discovery
of differentially methylated regions (DMRs). The software performs randomization tests to compute
empirical P -values, corrects for multiple testing, and requires no prior knowledge in programming. All
computed results are provided as plots or tables and can be easily exported. DiMmer is thus a powerful
one-stop-shop for EWAS data analysis.

Key words DNA modification, Methylation, Epigenetic, Epigenome-wide association studies,
Differentially methylated regions

1 Introduction

DNA-methylation describes the addition of a methyl group to ade-
nine or cytosine bases within the DNA molecule. For eukaryotes
especially the methylation of cytosines influences the accessibility of
the DNA double-strand and is consequently involved in expression
regulation [3, 10]. Since the four bases (A, C, T, G) are not equally
distributed over the genome scientists focus primarily on the so-
called CpG rich regions usually defined to have a GC-content of
more than 50% and observed/expected CpG ratios greater than
0.6 [5].

Approaches to measure DNA-methylation levels can be catego-
rized into next generation sequencing (NGS)-based or array-based
methods. The former are principally able to detect methylation

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_5, © Springer Science+Business Media, LLC, part of Springer Nature 2018

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_5&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_5

52 Tobias Frisch et al.

levels genome wide, not only in a CpG- but also in CHG- and
CHH-context where H stands for A, T, or C. However, the
resulting data is much more complex to handle and the expenses
are linked to the sequencing depth. An additional bias might be
introduced based on the preparation steps and utilized by the
sequencing methodology [9]. Array-based methods are limited by
the amount of observable methylation sites but are well known for
several years and have proven to be more cost-efficient [13]. They
are the quasi-standard to date, although NGS-based approaches
are expected to be seen in higher numbers in the future.

The arrays provided by Illumina (HumanMethylation 450 K
or MethylationEPIC 850 K BeadChip) have been widely used in
epigenetic studies [15]. The 850 K array is the newest version built
on the structure of the 450 K array and provides over 850,000
methylation sides that are no longer limited to CpG islands. Using
the Illumina technology produces datasets that require three major
steps in order to reveal differences in methylation between sample
groups:

1. Normalization and Correction
2. CpG significance
3. Search for differentially methylated regions (DMRs)

In this chapter we introduce DiMmer [1], a Java-based
software that provides the functionality necessary to read and
analyze raw Illumina output. The only requirement to run this
software is a working Java Runtime Environment (JRE) [12].
It is a one-stop-shop that, with only few mouse clicks, extracts
DMRs associated with a phenotype of interest (or confounder)
from Illumina raw data.

2 DiMmer Methods and Workflow

The software provides a user interface that is designed to guide
through the whole analysis process. Even for larger datasets DiM-
mer is able to run on a standard laptop computer—but we
recommend to use a machine that is equipped with 16 GB of
memory (RAM). The user interface also provides information
and guidelines regarding all options and on how to interpret the
visualized results.

In the following section we provide an overview about the nine
data analysis steps (Fig. 1) and all selections necessary to analyze
your dataset. Additionally we provide background knowledge
about the implemented algorithms.

2.1 CpG
Significance

In the first step we have to read the given raw data files, normalize,
and test for significant CpGs between samples based on the study
design. A permutation will be performed in order to evaluate

DiMmer: Discovery of Differentially Methylated Regions in EWAS Data 53

Fig. 1 Starting screen of DiMmer showing the first out of nine steps necessary to process the data

statistical significance of single CpG sites. In addition, we will
correct for multiple testing and visually interpret the results.

2.1.1 Study Design In the first place we have to decide whether the experimental
data consists of paired or unpaired samples. The majority of
studies focus on independent samples although this potentially
introduces problems with environmental confounders [14]. An
example for a dependent dataset would be a twin study containing
monozygotic twins where we are able to control for genetic factors.
The decision between paired and unpaired will later influence the
label permutation tests.

In the next step we have to choose a suitable model which
is able to reflect our study design. The regression model is able
to reveal different methylated CpGs based on continuous variables
such as age, weight, or survival time. Additionally, confounding
factors such as differences in cell composition can be easily included
in this model type. Especially for blood samples it has been shown
that cell composition is a critical factor since DNA-methylation
differs strongly between different cell types [8]. Given that we
are able to estimate the cell composition [7] this cell frequency
should be included in the regression model. When dealing with a
standard case/control study containing healthy and disease sample
the t-test is recommended. Here it is assumed that the sample data

54 Tobias Frisch et al.

Table 1
Example structure for the annotation file

Sentrix_ID Sentrix_Position Status Group_ID Pair_ID Gender_ID

9969489068 R01C01 0 Disease P1 m

9969489068 R02C01 1 Healthy P1 f

follows a normal distribution. The test static evaluates if the given
groups show significant difference in the mean of their distribution.
Although this model requires a binary classification of the samples,
we have to distinguish between three cases: We can generally test
for (1) differentially methylated CpGs between the groups (select
both) and (2) hyper- or hypomethylated CpGs (select left/right).

2.1.2 Input In screen three (Fig. 1) we are required to define our input data.
As input we take the raw data from the Illumina files (*.idata)
that are produced with HumanMethylation 450 K BeadChip (or
Infinium MethylationEPIC 850 K). Based on those files we are
able to calculate β-values for every probe as defined in Eq. 1. In
this formula yi,M represents the intensity value of the methylated
spot while yi,U corresponds to the unmethylated locus leading to
values between 0 (unmethylated) and 1 (fully methylated).

βi = max(yi,M, 0)

yi,U + yi,M + 100
(1)

In addition a comma separated annotation file providing informa-
tion about the samples is required. The first two columns in the
file are labeled Sentrix_ID, Sentrix_Position and are necessary to
locate and access the corresponding sample IDAT file. As shown in
Table 1 there are two columns (Group_ID and sample) necessary
to split all samples into two groups. In case of a paired study the
column Pair_ID reflects the connection between samples. Addi-
tional columns might be added that represent other phenotypes of
interest or confounding factors.

2.1.3 Pre-processing After defining input and output directory in screen three (Fig. 1)
all necessary information for the pre-processing has been collected.
In this step the DiMmer software calculates β-values as previously
defined and automatically applies normalization and correction
methods thereby accounting for the technical bias of the array
experiments. All those steps are performed automatically by the
software providing simple but effective pre-processing of the data
without the user interference.

DiMmer: Discovery of Differentially Methylated Regions in EWAS Data 55

Background Correction The background correction is based on the control probes
provided by the Illumina arrays. Using those spots we are able
to calculate the signal distribution of the background which then
will be subtracted from every probe.

Quality Control After correcting for the background a basic quality control is
performed. Here we filter out loci whose intensity is significantly
lower than the intensity values of all other probes. The default
cutoff for Formula 2 is hereby set to 0.01.

P(i) =
m∑

j=1

I
[
Intensity(j) > Intensity(i)

]

m
(2)

Quantile Normalization Here, we use a stratified quantile normalization as described in [2]
to normalize for different distributions within the β-values.

2.1.4 Permutation In the next step DiMmer applies the previously specified model to
the remaining CpGs. In order to evaluate the significance of our
results we perform a permutation test. In screen 4 (Fig. 1) we are
therefore specifying the amount of permutations that should be
performed and define the resources available on your computer.
Afterwards the t-test is applied to calculate the CpGs that are
separating the user defined groups. In order to retrieve empirical
P -values the labels are permuted n times and for every of those
permutations the selected model is applied again.

Afterwards the user is provided with a wide range of figures
visualizing the results as shown in Fig. 2. Based on those results one
may select a method to correct for multiple testing. Additionally,
the CpGs that are significantly differentially methylated between
the user-defined groups will be selected by a cutoff value (Fig. 3).
Therefore a careful evaluation of the permutation results is recom-
mended since they have a strong impact on the downstream DMR
search (Subheading 2.2).

Original P -values In the first tab of the results section (Fig. 2) of screen 6 information
about the original P -values is presented. These values are the direct
result of the underlying test statistic and have not been corrected
for multiple testing.

Empirical P -values The empirical P -values are the frequencies of observing P -values
obtained by random permutations that are better (i.e., lower) than
the original P -values calculated by the test statistic. If no label (or
few) permutation is receiving a better P -value than the original
labeling, we have a highly significant CpG. In opposition, finding
significant P -values for a CpG site after random permutation of
the labels indicates that the CpG is rather sample unique but
not specific for the phenotype under investigation (high empirical
P -value).

56 Tobias Frisch et al.

Fig. 2 In screen six we show the results after random label permutation in order to reveal differentially
methylated CpGs. Based on this the user is able to decide which P -values and threshold should be used
for the DMR finding algorithm

Fig. 3 Screen 7 of the interface where the user is supposed to give the parameters for the DMR search: (1)
The maximal distances between two consecutive CpGs in order to be allowed to belong to a reported DMR. (2)
The number of permutations, window size, and how many exceptions should be allowed. (3) The P -values of
interest and the selected cutoff

DiMmer: Discovery of Differentially Methylated Regions in EWAS Data 57

Fig. 4 Volcano plot of the empirical P -value after 1000 permutations on the example dataset. Every dot
represents a CpG site and is colored red (P -value ≥ 0.05) or blue (P -value ≤ 0.05) indicating the significance
for group separation

Findings of every correction method are visualized in three
different plots. In Fig. 4 a volcano plot is shown that visualizes the
log-fold-change on the x-axis and a selected (here empirical) P -
value on the y-axis. It is generally expected that CpGs with a highly
significant value also have a high change of differential methylation
between user-defined groups. Furthermore, volcano plots indicate
the amount of significant CpGs represented by blue and green dots
(threshold 0.05), thereby giving a feeling on how to choose the
threshold for downstream analysis.

In addition, it is interesting to compare the original P -value
with the newly calculated normalized one. Every CpG in Fig. 5
that is on or above the diagonal line is at least as significant after
correcting for multiple testing. In this figure we show the results
for the empirical P -value which almost looks like a step function.
This can be explained by the limited amount of permutation we
have performed here.

Finally, in Fig. 6, the amount of estimated P -values is plotted in
a histogram. This is usually equally distributed and can also give an
impression on the amount of remaining CpGs for a chosen cutoff.

58 Tobias Frisch et al.

Fig. 5 Scatter plot showing original against empirical P -values after 1000 permutations

False Discovery Rate
and Family-Wise Error
Rate

We implemented the Benjamini-Hochberg (BH) [6] method to
adjust for multiple testing by adjusting the false discovery rate
(FDR).

p(1) ≤ p(2) ≤ · · · ≤ p(M) (3)

L = max

{
j : p(j) ≤ α ∗ j

M

}
(4)

As shown in Eq. 4 this method calculates a new threshold p(L)

based on the sorted P -values. Thus, it is reducing the type 1
error (false positives) where a CpG is predicted to be differentially
methylated while it is actually not.

DiMmer: Discovery of Differentially Methylated Regions in EWAS Data 59

Fig. 6 Histogram plot showing empirical P -values after 1000 permutations based on the example dataset
available on the DiMmer website

pj ≤ α

M
(5)

We also offer the more traditional Bonferroni correction method
using the family-wise error rate (FWER). It is much more con-
servative than BH especially since the number of possible CpGs
(M = 850,000) will lead to a very low significance threshold.

2.2 Differentially
Methylated Regions

A differentially methylated region (DMR) represents a set of
adjacent CpGs usually reflecting functional regions of the genome.
It has become general practice to hunt for DMRs instead of single
CpGs to reach a higher level of robustness. Depending on the
conducted study a DMR can be specific for tissue (iDMR), cancer
(cDMR), or aging (aDMR) [14]. In average the length is expected
to be below 1 kb. However, regions with more than 1Mb have
been reported [4].

Our package uses a window based approach in order to evalu-
ate which differentially methylated CpGs can be accumulated into
one DMR (Fig. 7). In order to find all maximal DMRs with at most
k exceptions a window of size w is moved over the genome. As long
as the number of not differentially methylated CpGs is smaller than
k the DMR is extended. Window size and number of exceptions
are hereby intuitive and not independent parameters. Increasing w

60 Tobias Frisch et al.

CpG CpG CpG CpG CpG CpG CpG

ATTCA GGT ATTT ATTCA GGTTA AA ATTT TGG

0.001 0.002 0.2

1

0.01 0.8 0.002 0.2

1 1 0 0 1 0
(2)
(3)
(4)

(6)

(1)

(5)

Fig. 7 Visualization of the DiMmer work flow: (1) Based on the Illumina Chip we know where the CpGs are
located in the human genome. (2) Testing reveals whether CpGs show differences in methylation between
the groups leading to P -values that are corrected for multiple testing. (3) The user decides which correction
method should be applied and gives a threshold leading to a binary array where significant CpGs are marked
with 1 and 0 otherwise. (4) The algorithm slides with a window of size k = 4 over the array. (5) If there are
more than k ≤ 2 insignificant CpGs, the algorithm stops leading to a DMR as shown in blue (6)

will consequently lead to less DMRs reported since the probability
to see the maximal number of exceptions is increased. According
to that increasing the number of exceptions k will mainly influence
the length of revealed DMRs.

In order to evaluate whether the calculated DMRs (especially
their length) are significant the tool performs a permutation test
by randomly shuffling the CpG vector. For every permutation the
new set of differentially methylated regions is calculated in order
to compare the length of those regions. It is expected that the
DMRs found in the permuted datasets are much lower than in the
original one. To access the quality of a DMR the score is defined
as the ratio between the amount of differentially methylated CpGs
and the overall length of the DM-region. In Fig. 8 the distribution
of the score (number of CpGs divided by the length of the DMR)
is shown. Here we can see that the best score, achieved by a DMR
in the original dataset is above 0.56 while the majority of scores
achieved after permutation is less than 0.05.

Further results are summarized in the “tables” tab of screen
9 and provide a much more detailed overview. Especially the
“Merged table” combines all results of the DMR search and
permutation tests. The most important columns:

1. Hyperlink provides a UCSC [11] link that will show the
selected DMR in the UCSC genome browser.

2. The number of CpG contains the number of differentially-
/hyper-/hypo-methylated CpGs within the DMR depending
on the previously selected test statistics.

3. The number of DMRs shows the amount of DMRs with the
same size found in the non-permuted data.

DiMmer: Discovery of Differentially Methylated Regions in EWAS Data 61

Fig. 8 Histogram showing the distribution of DMR scores of all permutations (blue bars). The vertical line
indicates the score achieved by the best DMR in non-permuted data

4. Average DMRs: The number of DMRs in all permutations that
have at least the same length.

5. The P -value indicates the probability to find at least the
same number of DMRs with at least the same length over all
permutations. This is probably the most important column and
the final result one should look at.

6. In the next column the log-ratio provides the ratio between
column three and four. It thereby assesses the quality of the
calculated DMRs compared to permuted data. High values
indicate that in average we found significantly less DMRs in
the permuted data of the same length.

7. As previously mentioned the score is the ratio between differ-
entially methylated CpG and the length of the selected region.

Acknowledgements

Jan Baumbach and Tobias Frisch are grateful for financial support
from the VILLUM foundation (Young Investigator Grant nr.
13154).

62 Tobias Frisch et al.

References

1. Almeida D, Skov I, Silva A, Vandin F, Tan
Q, Röttger R, Baumbach J (2016) Efficient
detection of differentially methylated regions
using dimmer. Bioinformatics 33(4):549–551

2. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-
Acosta C, Feinberg AP, Hansen KD, Irizarry
RA (2014) Minfi: a flexible and comprehen-
sive bioconductor package for the analysis of
infinium DNA methylation microarrays. Bioin-
formatics 30(10):1363–1369

3. Bock C (2012) Analysing and interpret-
ing DNA methylation data. Nat Rev Genet
13(10):705

4. Frigola J, Song J, Stirzaker C, Hinshelwood
RA, Peinado MA, Clark SJ (2006) Epige-
netic remodeling in colorectal cancer results in
coordinate gene suppression across an entire
chromosome band. Nat Genet 38(5):540

5. Gardiner-Garden M, Frommer M (1987) CpG
islands in vertebrate genomes. J Mol Biol
196(2):261–282

6. Hastie T, Tibshirani R, Friedman J (2003) The
elements of statistical learning, corrected edn.
Springer, Berlin

7. Houseman EA, Accomando WP, Koestler DC,
Christensen BC, Marsit CJ, Nelson HH,
Wiencke JK, Kelsey KT (2012) DNA methyla-
tion arrays as surrogate measures of cell mixture
distribution. BMC Bioinf 13(1):86

8. Jaffe AE, Irizarry RA (2014) Account-
ing for cellular heterogeneity is critical in

epigenome-wide association studies. Genome
Biol 15(2):R31

9. Ji L, Sasaki T, Sun X, Ma P, Lewis ZA, Schmitz
RJ (2014) Methylated DNA is over-represented
in whole-genome bisulfite sequencing data.
Front Genet 5:341

10. Karlić R, Chung HR, Lasserre J, Vlahoviček K,
Vingron M (2010) Histone modification levels
are predictive for gene expression. Proc Natl
Acad Sci 107(7):2926–2931

11. Karolchik D, Baertsch R, Diekhans M, Furey
TS, Hinrichs A, Lu Y, Roskin KM, Schwartz
M, Sugnet CW, Thomas DJ et al (2003)
The UCSC genome browser database. Nucleic
Acids Res 31(1):51–54

12. Oracle (2014) Java 8. http://www.oracle.
com/technetwork/java/javase/overview/java
8-2100321.html. Accessed 06 Nov 2017

13. Plongthongkum N, Diep DH, Zhang K (2014)
Advances in the profiling of DNA modifica-
tions: cytosine methylation and beyond. Nat
Rev Genet 15(10):647

14. Rakyan VK, Down TA, Balding DJ, Beck
S (2011) Epigenome-wide association studies
for common human diseases. Nat Rev Genet
12(8):529

15. Wilhelm-Benartzi CS, Koestler DC, Karagas
MR, Flanagan JM, Christensen BC, Kelsey KT,
Marsit CJ, Houseman EA, Brown R (2013)
Review of processing and analysis methods
for DNA methylation array data. Br J Cancer
109(6):1394

http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html

Chapter 6

Implementing a Transcription Factor Interaction Prediction
System Using the GenoMetric Query Language

Stefano Perna, Arif Canakoglu, Pietro Pinoli, Stefano Ceri,
and Limsoon Wong

Abstract

Novel technologies and growing interest have resulted in a large increase in the amount of data available for
genomics and transcriptomics studies, both in terms of volume and contents. Biology is relying more and
more on computational methods to process, investigate, and extract knowledge from this huge amount
of data. In this work, we present the TICA web server (available at http://www.gmql.eu/tica/), a fast
and compact tool developed to support data-driven knowledge discovery in the realm of transcription
factor interaction prediction. TICA leverages both the GenoMetric Query Language, a novel query tool
(based on the Apache Hadoop and Spark technologies) specialized in the integration and management
of heterogeneous, large genomic datasets, and a statistical method for robust detection of co-locations
across interval-based data, in order to infer physically interacting transcription factors. Notably, TICA
allows investigators to upload and analyze their own ChIP-seq experiments datasets, comparing them both
against ENCODE data or between themselves, achieving computation time which increases linearly with
respect to dataset size and density. Using ENCODE data from three well-studied cell lines as reference,
we show that TICA predictions are supported by existing biological knowledge, making the web server a
reliable and efficient tool for interaction screening and data-driven hypothesis generation.

Key words Transcription factor interaction, Gene regulation, Genomic computing, Biostatistics,
ChIP-seq analysis, Data integration

1 Motivation

Gene expression in prokaryotes and eukaryotes determines almost
every internal and external behavior of the cell(s), from reaction
to stimuli all the way to cell development and death. To modulate
gene expression, cells have evolved different mechanisms. One of
the most well known and studied is the activity of Transcription
Factors (TFs): these proteins possess highly specific DNA-binding
domains that they use to latch onto specific parts of the DNA.
Once attached, TFs can enhance or repress RNA polymerase access
to the DNA area encoding for a particular gene, thereby reducing
or enhancing the amount of its expression. This is one of the most

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_6, © Springer Science+Business Media, LLC, part of Springer Nature 2018

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_6&domain=pdf
http://www.gmql.eu/tica/
https://doi.org/10.1007/978-1-4939-8561-6_6

64 Stefano Perna et al.

basic forms of regulation and is widely used across all species in
the natural world; thus, it is of high interest for researchers to
understand the role of each transcription factor in the regulatory
machinery.

Transcription factors are known to implement their regulatory
mechanisms in coordination, acting as functional groups. Ways to
discover TF complexes include in vivo experiments, observation
of live cells, and testing potential interactors in vitro; however,
given the intrinsic combinatorial nature of the problem, these
approaches are unlikely to be complete or even feasible over
the whole spectrum of TF-TF interactions. In the context of
gene regulation, computational biology has become a powerful
hypothesis generation tool, rooted in mathematical interpretation
of experimental data: by screening unlikely interactions, the inves-
tigator can then focus resources on verifying the most interesting
candidate interactors using more traditional methods.

In this chapter, we present the TICA (Transcriptional Interac-
tion and Coregulation Analyser) web server, a convenient tool for
analyzing chromatin immunoprecipitation and sequencing dataset
targeting TF binding locations and predicting TF-TF interaction.
The TICA web server leverages two powerful assets:

• the expressive power of GenoMetric Query Language (GMQL)
[7], a novel high-level declarative language for seamless
integration, management, and querying of heterogeneous
genomic datasets;

• a statistical classifier which predicts colocation between
interval-based data on a single reference system by exploiting
the structural and positional information given by the intervals
themselves.

We developed TICA in the context of the TF-TF interaction
prediction problem (hence the name), and therefore its model is
tailored to the needs of this biological context. The TICA web
server, developed in the Django framework, is available for both
data exploration of ENCODE narrowpeaks on Homo sapiens cell
lines and for analysis of novel biological datasets, provided by
biological investigators.

This chapter is structured as follows: in Subheading 2 we
describe the web server, the main workflow and resulting output.
In Subheading 3, we provide an overview of the implementation
strategies we used to develop the web server and underlying
algorithm, and discuss the advantages of using GenoMetric Query
Language queries. In Subheading 4, we analyze the performance
of the web server, in particular we describe datasets provided in
the initial deployment and how the prediction algorithm scales
with increasing amounts data provided by the user. Finally, in
Subheading 5, we highlight the most interesting aspects of the
web service in terms of performance, accuracy, and acceptable data
formats.

TF Interaction Prediction Using GMQL 65

2 TICA Web Server

We have developed and deployed a web server (and related web
application), with which investigators can use the TICA framework
to predict TF-TF interaction on ChIP-seq datasets on a set of
model cell lines from Homo sapiens. The web server can be accessed
at: http://www.gmql.eu/tica/. The web implementation can be
employed in three ways:

1. users can investigate the latest version of ENCODE ChIP-
Seq data available to search for evidence regarding interaction
hypotheses;

2. they can upload their own TF ChIP-seq datasets to the database
and analyze all possible interactor couples therein; or

3. they can upload their datasets and compare them with the
ENCODE datasets, searching for potential interaction phe-
nomena.

2.1 Workflow Users connecting to the server see the welcome page reported in
Fig. 1. They are not required to create an account or authenticate
in any way in order to use the web server: data uploaded is stored in
a temporary folder (with a session ID for tracking during analysis),
and subsequently discarded. In the welcome page, the user is
prompted to select the context cell line: this determines the p-
values for statistical tests (due to different null distributions) and
the list of ENCODE TFs available for comparisons.

The workflow in the cases 1, 2, and 3 above is identical, except
for the upload procedure required to submit, transform, and filter
user-provided datasets (see Subheading 3.1). Experimental data
have to be uploaded via a single zip file containing one folder
for each TF, which must be named as the TF itself. Each sample
will be assigned to the TF inferred by its folder, regardless of the
actual filename; single files should be in ENCODE bed narrow-
peak format.1

If the user selects “ENCODE” in the main page, they will be
immediately redirected to parameter selection.

2.2 Parameters After uploading data (if required) users have to specify the parame-
ters for the analysis using the parameter input page (Fig. 2). A user
can tune most of the TICA classifier parameters to suit biological
assumptions or experimental conditions (cf. Table 2): among other
choices, the user can restrict the analysis to a sublist of the TFs to be
compared, define mindist couples maximum distance (from prese-
lected values: 1100, 2200, 5500 bp), declare which test conditions

1The schema for ENCODE narrowpeak data files is defined at
https://genome.ucsc.edu/FAQ/FAQformat.html#format12.

http://www.gmql.eu/tica/
https://genome.ucsc.edu/FAQ/FAQformat.html#format12

66 Stefano Perna et al.

Fig. 1 Screenshot of TICA web application main page. Through the drop-down menu, the users can decide
the context cell line among those available; users can also select whether they want to upload data or use
ENCODE data

have to be used (by ticking or unticking the corresponding test
names), and state global significance level required and minimum
number of test conditions to be satisfied (for additional details on
the TICA classification algorithm, see Subheading 3.2). Default
values are provided, matching specifications in Table 2.

2.3 Output Results are presented to the user through a table and a heatmap (see
Fig. 3): the heatmap shows the number of test conditions satisfied,
with −1 represents TF-TF pairs that do not meet the biological
information screening criteria (see Subheading 3.2). Details on
each feature extracted from observed mindistance couple distribu-
tions are given in a separate table, on the same page. Results can
be exported as a .csv file using the “Export to CSV” link (also in
Fig. 3).

2.4 Deployment All mindistance couples and related distances for the default
cell lines in ENCODE data are precomputed and stored in a
PostgreSQL database. These tables are only refreshed during major
data updates; when user-provided data is uploaded in the system,

TF Interaction Prediction Using GMQL 67

Fig. 2 Screenshot of TICA parameter input page

68 Stefano Perna et al.

Fig. 3 Screenshot of TICA results page, after submitting a query on cell line GM12878. Middle table reports
all features from statistical tests and deterministic filters. Blue squares in the heatmap denote higher number
of tests passed

only minimal distance couple distance distributions between TFs
provided are computed on the fly. The server was developed
using the Django v1.11.7 framework (http://djangoproject.com);
queries are implemented inside the Django framework using the
Python API for GMQL, PyGMQL [9].

3 Implementation

The back-end supporting TICA is made of two conceptual
blocks:

http://djangoproject.com

TF Interaction Prediction Using GMQL 69

• a data preprocessing step, which takes either ENCODE or
user-provided narrowpeaks and removes noisy binding sites
and inactive transcription start sites, according to the context
cell line (described in Subheading 3.1) and is implemented
using GMQL;

• the prediction algorithm, a statistical procedure that compares
candidate TF-TF pairs against null distributions from random
pairs in the same cell line, with respect to a set of statistical
aggregators (Subheading 3.2).

3.1 Data
Preprocessing

We implement the preprocessing step of TICA by taking advantage
of GenoMetric Query Language (GMQL), a high-level, declar-
ative query language which supports data extraction as well as
many standard data-driven computations required by tertiary data
analysis [7]. We use mostly ChIP-seq datasets extracted from
ENCODE, but GMQL supports an integrated repository with
datasets extracted from ENCODE, TCGA, Epigenomic Roadmap,
GDC, and GEO; integration of heterogeneous datasets is sup-
ported by the GDM data model [8]. In GDM, a dataset includes
several samples; each sample is a pair of regions and metadata.
For instance, in the case of a sample resulting from a ChIP-
seq technology, regions describe the peaks of expressions (their
start, stop, peak positions and score; region samples are similar to
tracks that can be seen on a genome browser); metadata describe
additional attributes of each sample, for instance the specific
experiment name and tissue.

GMQL queries are written as sequence of statements operating
on abstract variables, each representing a genomic dataset; it is a
high-level language whose conditions apply both to regions and
to metadata. GMQL implements most of the standard relational
algebra operations [2], such as SELECT, PROJECT, GROUP,
ORDER, UNION, DIFFERENCE; it also supports domain-
specific operations, such as genometric JOIN, MAP, and COVER,
whose semantics and implementation are defined in [5].2

GMQL is particularly powerful as a data extraction language,
due to its implicit iteration over multiple samples of a dataset and
its very compact and readable query specification. The language
is also highly effective when integrating data coming from vastly
different data sources, as the standardization to GDM allows
for direct comparison between regions (represented by the same
coordinates, such as chromosome, start and stop) while preserving
all information ascribed to a particular data format (such as peak
calling p-values from ChIP-seq experimental data, or rpkm values

2The full description of GMQL language for the latest version (2.1 at the
time of writing) can be found at http://www.bioinformatics.deib.polimi.
it/geco/?try.

http://www.bioinformatics.deib.polimi.it/geco/?try

70 Stefano Perna et al.

from RNA-seq). GMQL seamlessly combines these attributes
using commands such as PROJECT and MAP, supporting and
streamlining data analysis pipelines.

As an example of the above, we show the queries which are
used for extracting TF binding sites (TFBSes) and transcription
start sites (TSSes), relative to a given cell line, from the repository
(Listing 6.1). The TFBS filtering query (lines 1 through 6, same
Listing) is also performed on user-provided narrowpeaks.

1 # e x t r a c t s 1−base ex a c t TF peaks and produces one
sample f o r each TF

2 TFS = SELECT(exper iment_type == 'ChIP−seq ' AND c e l l ==
' t a r g e t _ c e l l ') ENCODE_NARROWPEAK;

3 TF_PEAKS = PROJECT(reg ion_update : l e f t AS s t a r t + peak ,
r i g h t AS s t a r t + peak +1) TFS ;

4 TF_PEAK = COVER(1 ,ANY; groupby : tf_name) TF_PEAKS ;
5
6 # e x t r a c t s TFBSes by look ing a t enc l o s i ng windows with

enough TF s i g n a l , i . e . enough peaks f a l l i n g in a
window of 1000 ba s e s

7 WINDOW = PROJECT(reg ion_update : s t a r t AS s t a r t − 1000 ,
s top AS s top + 1000) TF_PEAK;

8 MAPPED_WINDOW = MAP(jo inby : tf_name) WINDOW TF_PEAK;
9 TF_EXTRACTED = SELECT(reg ion : count >= w)

MAPPED_WINDOW;
10
11 # e x t r a c t h i s t one marks −−− H3K9ac and H3K4me3 a r e

found in promoter a r e a s of a c t i v e l y t r a n s c r i b e d
TSSes . S i m i l a r q u e r i e s a r e w r i t t e n f o r h i s t o n e s
H3K4me1 (enhancer s) and H3K36me3 (exons) − here
omitted

12 HMS = SELECT((histone_name == 'H3K9ac ' OR histone_name
== 'H3K4me3') AND c e l l == ' t a r g e t _ c e l l ')

ENCODE_BROADPEAK;
13 HM = COVER(1 ,ANY) HMS;
14
15 # f i l t e r TSS with enough ove r l ap with h i s t one marks
16 TSS = SELECT(annota t ion_ type == 'TSS ')

ENCODE_BED_ANNOTATION;
17 PROMOTER = PROJECT(reg ion_update : s t a r t a s s t a r t −

2000 , s top a s s top + 200) TSS ;
18 MAPPED_PROM = MAP() PROMOTER HM;
19 TSS_FILTERED = SELECT(reg ion : count >= h) MAPPED_PROM;
20
21 # f u r t h e r f i l t e r s TSS with enough ove r l ap with TF−

PEAKS −− from a r b i t r a r y TF peaks
22 MERGED_PEAKS = MERGE() TF_PEAKS
23 MAPPED_TSS = MAP() TSS_FILTERED MERGED_PEAKS
24 TSS_EXTRACTED = SELECT(reg ion : count >= k) MAPPED_TSS;

Listing 6.1 GMQL query used to filter TF binding sites and TSSes used by the
method (summary)

TF Interaction Prediction Using GMQL 71

• Lines 2–4: the TFS variable includes all the relevant TF
samples extracted from ENCODE narrowpeak datasets.3 The
PROJECT operation is used to reduce the size of ChIP-seq
regions to a single base pair. The COVER(1,ANY) operation
is used to combine replicates from different transcription
factors, keeping all regions from all samples and merging
any two or more regions which overlap. The groupby option
limits the merging to samples that share the same tf_name
metadata attribute, i.e. contain experiment data on the same
transcription factor. The result includes one sample for each
distinct TF, with regions corresponding to a single base pair
where the peak is located.

• Lines 7–9: Candidate TFs for the method are selected. A
window of 1000 base pairs is constructed around each peak,
and TFs associated with windows enclosing a counter of peaks
over a threshold (w) are extracted. The PROJECT operation
builds the WINDOW, the MAP operation counts the number
of peaks included in each window, and the final SELECTion
extracts the TFs.

According to the method, TSSes are extracted based on three
progressively applied conditions: overlap with histone marks of
promoters, of exons, and of enhancers; we only explain how to
select TSSes by using histone marks of promoters, as the second
and third extractions are very similar.

• Lines 12–13: Histone marks are selected. Extraction is done by
means of a SELECTion; replicates are then combined using
the COVER, keeping all regions from all samples and merging
any two or more regions which overlap. Eventually, each HM
sample includes all the regions of a given (set of) histone
modifications present in ENCODE.

• Lines 16–19: TSSes are filtered. Promoter regions are built, and
overlapping histone modification regions are counted; a TSS is
selected if it is supported by a sufficient number of overlaps
(one for each histone mark in the relevant regions). As pro-
moter regions, we take standardized extensions of transcription
start sites; these are built using a PROJECT, which takes TSSes
and modifies their start and stop positions by extending them
2000 pairs upstream and 200 pairs downstream.4 Then, the
MAP operation counts the number of overlapping regions and
the final selection filters the TSSes.

3ENCODE narrowpeaks are also given for ChIP-seqs targeting histone
modifications. We remove them from the dataset by means of NOT clauses—
omitted for brevity.
4These are nominal values for promoter and exon length, chosen for our
experiments. Different investigators can use their own values for regulatory
regions extension, depending on their biological assumptions.

72 Stefano Perna et al.

• Lines 22–24: Finally, TSSes to be used in the method are
extracted. In addition to overlaps with histone modifications,
we also require TSSes to be supported by a sufficient number
of TF peaks. The MERGE operation puts all the peaks of
different transcription factors into a single sample, then the
MAP counts how many peaks overlap with promoter regions
for TSS as defined above; the final SELECT extracts the TSSes.

3.2 Interaction
Prediction Method

After TF binding site data has been filtered and reduced to
1 bp length by means of the GMQL queries, TICA investigates
colocation between two sets of transcription binding sites in a
statistically robust way. It does that by performing a significance
test based on the null hypothesis that two random TFs (named
candidate interactors) are not found in close position to one
another (according to suitable aggregation functions, as below).

Briefly, the main concept behind TICA is the minimal distance
couple (or mindist couple for short), a pair of intervals which are
found to be the closest to one another according to the given coor-
dinate system, and are not located too far apart. Minimal distance
couples for a given pair of transcription factors (represented by the
positions of their binding sites) induce a distance distribution via
the genomic distance function, which is used to generate a set of
observations related to that particular pair of TFs. TICA uses both
standard (average, median) and novel (median absolute deviation,
distribution right tail size) statistical aggregators of the distances
as features to feed a statistical classifier (Fig. 4). The output of
the classifier is whether the null hypothesis above is rejected for
a certain TF-TF pair.

TICA builds null distributions for each feature by randomly
sampling pairs of TFs from those available in ENCODE phase 2
and 3 datasets (narrowPeak format) in a given cell line. Data comes
from chromatin immunoprecipitation and sequencing experiments
on three major context cells: HepG2, GM12878, K562. For
each cell line, we also extract the TSSes which are more likely
to be actively transcribed, based on available histone marks (see
Subheading 4.1) and TF binding information, which we use to
impose additional restriction on the candidate interactors: TICA
rejects a candidate pair if the ratio of couples which colocate in
the same promoter is too low, with respect to the total size of the
distribution. This is done to make sure that results have biological
relevance as indicators of potential coregulatory behavior, which is
linked with physical interactions [3].

We calculate p-values of null distributions and TFBS colo-
cation in promoters using a Python script (v3.6). In particular,
mindistance couples are computed first with respect to one of the
TF (meaning, for each of its binding sites, the algorithm finds the
ones for the potential partner which are closest and not above the
distance threshold), then with respect to the other. The two results

TF Interaction Prediction Using GMQL 73

Distribution median: 336.00
Distribution mean: 525.04
Distribution MAD: 321.00
Distribution head
500bp right tail
1000bp right tail

25

20

15

10

5

0
0 500 1000

Distance [bp]

Fr
eq

ue
nc

y
[1

]

1500 2000

Fig. 4 Distance distribution inferred from minimal distance couples of transcription factors CTCF and JUN in
cell link HepG2. Vertical lines denote statistical aggregators used in TICA tests (mean, median, and median
absolute deviation). Two dimensions for the right tail are given: long (distance greater than 500 bp, orange)
and short (distance greater than 1000 bp, red). Right tail size in this case is approximately 15% of the total

Fig. 5 Example computation of mindistance couples, highlighting possible ambiguities. Two TF track snippets
are given (blue and orange). Proceeding as per the scanning direction, if blue is chosen as anchor (and orange
as experiment), the minimal distance couples are correctly identified as (a,b) and (d,e) (note that d is closer to
e than to c). However, if roles are inverted, three couples will be found instead: (b,a), (c,d), (e,d). Intersecting
results guarantee consistency with the model

are then intersected, yielding the final mindist couple list: this is
done to avoid scenarios where one binding site is the closest with
respect to a target, but the reverse is not true (Fig. 5).

3.3 Data Format TICA can in principle work with any kind of genomic regions,
due to the fact that data is managed by the flexible GDM model
via GMQL. However, it is reasonable to assume that the required
maximum displacement between candidates will be small (in other
words, we expect regions to be very close to each other with respect

74 Stefano Perna et al.

to the linear dimension of the universe set): this is due to the fact
that physical interaction between TFs happens at molecule scale,
where distances are in the order of 1–10 nucleotide base pairs [4]
(compare with the average size of a human chromosome, 1.2 × 108

base pairs).
Data from ChIP-seq experiments is given in variable size,

usually in the range of 101 (point-source information or TSS
locations) to 103 base pairs (histone modifications, genes), making
certain fine-grained analysis much more difficult. We overcome
this by using ENCODE narrowpeak regions, which contain the
position of the highest confidence point-source for each region (as
offset from the starting point): we represent each binding site using
only this high-confidence, 1 base pair-long peak in order to make
statistics on small values of distance meaningful.

4 Performance

4.1 Materials We test and validate our model using data from ENCODE phase 2
and 3 ChIP-seq experiments in narrowpeak format, currently avail-
able in GMQL public repositories. Our chosen model organism
was Homo sapiens. We use the following data in our experiments:

• Context cell lines: three cell lines were selected due to data
availability and quality: HepG2 (liver carcinoma), K562 (myel-
ogenous leukemia) and GM12878 (healthy lymphoblastoids);

• TF binding locations: data representing transcription factor
binding points (TFBSes) in narrowPeak format [6], due to
higher peak precision and presence of point-source location
information for each region;

• Histone marks: the following marks have been chosen for
highlighting actively transcribed TSS (see Subheading 3):
H3K36me3 (exons), H3K9ac and H3K4me3 (promoters),
H3K4me1 (enhancers). Data from ENCODE phase 2 and 3
repository, limited to cell lines mentioned above. Data format
chosen is ENCODE broadPeak [6];

• Transcription start sites: data also from ENCODE phase 2
experiments, in standard bed format. TSS are described in
terms of the first exon base only (regions are 1 bp in length).

Data quantities are listed in the Table 1.

4.2 Parameter
Settings

Parameter chosen for GMQL queries and TICA algorithm during
performance evaluation are reported in Table 2. The choice of
parameters is driven by the following biological considerations:

• standardized regulatory region length is a common assump-
tion when working with gene expression regulation;

TF Interaction Prediction Using GMQL 75

Table 1
Data volume used in pipeline experiments, listed by cell

Cell line
TF
number

File
number

Data
size
(Gb)

Data size
(Millions
regions)

Actively
transcribed
TSSes
number

HepG2 200 1085 13.16 181 25097

GM12878 148 794 8.66 121 31660

K562 288 2057 23.19 322 32356
TSS numbers refer to sample size after GMQL filtering

Table 2
Parameter setting for TF-TF interaction prediction pipeline

Parameter Value

Exon length 200 bp

Genomic dimensionsa Promoter length 2000 bp

Enhancer length 100 kbp

Clustering value k 3

Data filters TFBS scanning window size 1000 bp

Min. number of TFBS in active
promoters

50

Metric constraints Mindist couple max distance 2200 bp

Number of points in nulls ≥10,000

Tests and thresholds Right-tail threshold 1000

Test p-value 0.2

Required number of rejected null
hypotheses

3

Minimum number of mindist couples 1

Minimum fraction of mindist couples
colocating in a promoter

0.01

aExtending TSS according to their strand

• TFBS window of accumulation is chosen so that it covers most
of a standard promoter size without overextending;

• mindist couple max distance is one promoter length plus one
exon (assumed size of promoter area)

• the minimum number of TFBSes in active promoter is chosen
as the first quartile of the overall distribution of the counts of
TFBSes in promoters in HepG2 (taken as preferred modelling
environment).

76 Stefano Perna et al.

Experiments and performance evaluation have been performed
on the GeCo server at DEIB, Politecnico of Milano. The TICA
web server is hosted on a Dell PowerEdge R730xd server with 2
Intel Xeon E5-2660 v4 processors and 384 GB of RAM.

4.3 Performance
Assessment

Performance estimation for the web server can be divided into two
blocks:

• computation time needed to (re)generate the database from
ENCODE data and/or to analyze novel data;

• accuracy of predictions.

In the context of this work, we focus mostly on evaluation of the
actual computation performance (i.e., time consumed) as opposed
to discussing algorithm accuracy. Future works will be targeted
towards the correctness of the method.

4.3.1 Null
Distribution Generation
from ENCODE

Execution times for the full pipeline on ENCODE data are listed in
Table 3. Cell lines and data volumes correspond to those reported
in Subheading 4.1. The pipeline has been split into four major
parts:

• TFBS query: corresponding to lines 2 through 9 of Listing 6.1;
• TSS query: corresponding to lines 12 through 24 of the same;
• TSS map: the mapping of each binding site to all TSS in

the promoter of which it binds, used to determine whether
a mindist couples binds to shared promoter;

• Mindist couples: where the mindistance couples are computed
by TICA.

Computation times reported in Table 3 refer the full analysis of
the entire ENCODE cell line they refer to, which can involve
thousands of millions of regions at a time (in the case of K562, ca.
3 × 108 regions are analyzed—cf. Table 1). In typical use cases, the
computation times are faster by two to three orders of magnitude
(cf. next paragraph).

Table 3
Tabulation of execution times for TICA pipeline steps on the three context
cell lines

Cell line TFBS query TSS query TSS map Mindist couples

HepG2 108 194 21 120

GM12878 77 138 15.5 60

K562 204 407 46 376.5
Input data is taken directly from ENCODE (see Table 1). Time measured in minutes

TF Interaction Prediction Using GMQL 77

4.3.2 Analysis of
Novel Data

As a simulation of typical levels of workload, we generate synthetic
data in narrowpeak format with variable levels of data volume. Two
scaling factors were considered:

• number of transcription factors (each with a given number
of regions): this influences the amount of candidates and
therefore the number of times each step must be executed;

• sample size (in number of regions per sample, for a fixed
amount of TFs): influences the amount of data filtered by
TFBS queries, the mapping times, and the number of compar-
isons during mindist couples’ distance distribution creation.

Note that each TF contains only one sample: giving more for
each TF would not influence the computation times in a tangible
manner (the COVER operation would collapse them to a single
one).

We time the execution of the full pipeline on seven different
scenarios, using HepG2 as context cell line: results are reported in
Table 4. The datasets are built as follows:

• we first consider a baseline scenario where the user provides
data for 20 TFs, each containing 5000 regions of 100 bp
length—we estimate this to be a typical data size for user-
submitted datasets;

• moving on the TF number scale, we submit one small (10
TFs), one medium (100 TFs), and one large (1000 TFs)
dataset. Each dataset contains one sample per TF, and all
samples contain 1000 regions (lines);

• moving on region-per-sample number scale, we submit three
other datasets: small (103 regions), medium (104 regions), and
large (105 regions). Each dataset contains 50 TFs and one
sample per TF as before.

Table 4
Tabulation of execution times for TICA pipeline steps on synthetic
datasets

Cell line TFBS query TSS map Mindist couples Total

Baseline 34 12 3 0.8′

TF-small 11 5 0.5 0.5′

TF-medium 35 52 23 2′

TF-large 219 525 802 26′

SAMPLE-small 13 28 7 1′

SAMPLE-medium 111 33 23 3′

SAMPLE-large 613 41 38 12′
Context cell line chosen is HepG2. Time measured in seconds except for total, which is
converted to minutes for clarity

78 Stefano Perna et al.

Fig. 6 Loglog scale graph of execution time for TICA on ENCODE datasets. Each
line corresponds to one of the three algorithm steps timed as per Table 4. Upper:
scaling with respect to the number of TF in a datasets, with fixed number of
regions per sample; lower: scaling with respect to the number of region in a
sample, with fixed number of TFs (and hence samples)

Note that each level (small, medium, large) increases the raw
amount of data by a factor of 10, hence the increase in time is linear
rather than exponential. To visualize this, we provide loglog plot
of the scaling curves for TF- and sample size-scaling in Fig. 6. Note
that TSS query filter time has not been timed in this scenario, as
TSSes are not recomputed when user data is uploaded.

Baseline scenario is successfully computed in approx. 1 min,
which is also the expected time for a typical user-provided dataset.

4.3.3 Accuracy Briefly, we compare TICA predictions against existing biological
knowledge, represented by two databases: CORUM [10], a col-
lection of experimentally verified mammalian protein complexes,
and BioGRID [11], which reports functional interactions between
proteins based on both high-throughput datasets and individual
focused studies. We consider an interaction to be supported by
evidence if its two components are mentioned in a complex
(CORUM) or as a protein–protein interaction (PPI, in BioGRID).

TF Interaction Prediction Using GMQL 79

Table 5
Tabulation of quality measures for TICA predictions, with respect to the
union of CORUM and BioGRID databases

Cell line Recall Specificity Geometric mean performance Enrichment

K562 0.297 0.848 0.502 1.95
Data from ENCODE cell line K562

The quality metrics that we use are recall (fraction of interactions
correctly as positives out of all interaction supported by evidence),
specificity (fraction of intersection not identified as positives out
of all interactions which are not supported by evidence), and
geometric mean performance (square root of the product between
recall and specificity [1]). Results are tabulated in Table 5 for the
largest cell line, K562.

A caveat is that not all TF-TF interactions correspond to
complexes or PPIs (e.g., antagonistic TF-TF interactions), and
not all complexes and PPIs correspond to TF-TF interactions.
Nonetheless, co-operative TF-TF interactions are expected to be
enriched in complexes and PPIs. This enrichment can be computed
as recall over 1 minus specificity, which evaluates to 1.95 in our
specific example. That is, a TF-TF pair that is predicted by TICA
to interact is twice as likely to be found in a complex or as a PPI
than a pair that is predicted not to interact.

5 Discussion

In this work, we introduce the TICA web server, a convenient
tool for biologists to analyze ChIP-seq data on TF bindings for
TF-TF interaction prediction. TICA leverages on GMQL, a novel
language for data management, integration and querying of large,
heterogeneous genomic datasets. Through the TICA web server,
one can easily appreciate the expressive power and ease of use of
the GMQL query language.

The TICA web server is a compact tool which nonetheless
allows for fast analysis of entire cell lines from ENCODE ChIP-
seq experiments: once data is generated (typically only after a
major ENCODE release), running the prediction algorithm on
repository data is computed in a short execution time. Updating
the repositories with novel data has also very reasonable time
requirements, considering that a repository’s update rarely occurs
(the cell line with the most data available, K562, takes about 16 h
from start to finish on the server specified in Subheading 4.1).

TICA scales very well with increasing data size provided by
the user: as shown in Fig. 6, it exhibits a linear or close to linear
increase with respect to both the number of regions available in

80 Stefano Perna et al.

each samples and the number of TFs (samples) in the user provided
datasets. This gives us confidence in saying that TICA can be used
as a component of larger pipelines in the investigation of TF-TF
interactions.

When cross-checked with popular protein–protein interaction
(PPI) and protein complex databases, TICA shows very good
specificity (≥ 80%) while maintaining acceptable recall (circa 30%),
considering that these reference datasets are currently incomplete.
Given these quality measures, TICA can be used both as an
effective screening tool in preparation for wet-lab experiments
and as direct computational tool for investigating the interaction
between novel transcription factors and/or experiments in specific
conditions, such as disease or different cell lines.

Thanks to the expressive power of GMQL, the user is not
required to pre-process data or convert it to any particular schema:
peaks called in the standard narrowpeak format are sufficient
to perform analysis, and are reduced to their point-source form
directly by the query tool. Also, the TICA web server supports a
high level of customization, allowing investigator to tune almost
every parameter of the prediction algorithm without any loss of
performance with respect to what has been mentioned above. In
conclusion, we suggest the TICA web server as a compact, reliable,
and efficient tool for tackling the TF-TF interaction prediction
problem.

Acknowledgements

This work was supported by the ERC Advanced Grant GeCo (Data-
Driven Genomic Computing) (Grant No. 693174) awarded to
Prof. Stefano Ceri. We would like to thank members of the GeCo
project for helpful insights. Prof. Limsoon Wong was supported in
part by a Kwan-Im-Thong-Hood-Cho-Temple chair professorship.

References

1. Batuwita R, Palade V (2012) Adjusted
geometric-mean: a novel performance measure
for imbalanced bioinformatics datasets learning.
J Bioinform Comput Biol 10(04):1250003

2. Codd EF (1970) A relational model of data
for large shared data banks. Commun ACM
13(6):377–387

3. Geisel N, Gerland U (2011) Physical limits
on cooperative protein-DNA binding and the
kinetics of combinatorial transcription regula-
tion. Biophys J 101(7):1569–1579

4. Jankowski A, Szczurek E, Jauch R, Tiuryn J,
Prabhakar S (2013) Comprehensive prediction

in 78 human cell lines reveals rigidity and com-
pactness of transcription factor dimers. Genome
Res 23(8):1307–1318

5. Kaitoua A, Pinoli P, Bertoni M, Ceri S
(2017) Framework for supporting genomic
operations. IEEE Trans Comput 66(3):
443–457

6. Landt SG, Marinov GK, Kundaje A, Kher-
adpour P, Pauli F, Batzoglou S, Bernstein
BE, Bickel P, Brown JB, Cayting P et al
(2012) Chip-seq guidelines and practices of the
encode and modencode consortia. Genome Res
22(9):1813–1831

TF Interaction Prediction Using GMQL 81

7. Masseroli M, Pinoli P, Venco F, Kaitoua A, Jalili
V, Palluzzi F, Muller H, Ceri S (2015) Geno-
metric query language: a novel approach to
large-scale genomic data management. Bioin-
formatics 31(12):1881–1888

8. Masseroli M, Kaitoua A, Pinoli P, Ceri S
(2016) Modeling and interoperability of het-
erogeneous genomic big data for integrative
processing and querying. Methods 111:3–11

9. Nanni L (2017) A python data analysis library
for genomics and its application to biology.
Master’s thesis, Politecnico di Milano - DEIB.

Available at https://www.politesi.polimi.it/
handle/10589/135989-

10. Ruepp A, Waegele B, Lechner M, Brauner
B, Dunger-Kaltenbach I, Fobo G, Frishman
G, Montrone C, Mewes HW (2009) Corum:
the comprehensive resource of mammalian
protein complexes—2009. Nucleic Acids Res
38(suppl_1):D497–D501

11. Stark C, Breitkreutz BJ, Reguly T, Boucher L,
Breitkreutz A, Tyers M (2006) Biogrid: a gen-
eral repository for interaction datasets. Nucleic
Acids Res 34(suppl_1):D535–D539

https://www.politesi.polimi.it/handle/10589/135989

Chapter 7

Multiple Testing Tool to Detect Combinatorial Effects
in Biology

Aika Terada and Koji Tsuda

Abstract

Detecting combinatorial effects is important to various research areas, including biology, genomics,
and medical sciences. However, this task was not only computationally nontrivial but also extremely
difficult to achieve because of the necessity of a multiple testing procedure; hence few methods can
comprehensively analyze high-order combinations. Recently, Limitless Arity Multiple-testing Procedure
(LAMP) was introduced, allowing us to enumerate statistically significant combinations from a given
dataset. This chapter provides instructions for LAMP using simple examples of combinatorial transcription
factor regulation discovery and visualization of the results. This chapter also introduces LAMPLINK, which
is extended software of LAMP. LAMPLINK can handle genetic dataset to detect statistically significant
interactions among multiple SNPs from a genome-wide association study (GWAS) dataset.

Key words LAMP, Statistically significant combination, Multiple testing correction, Transcription
factors, GWAS, Epistasis

1 Introduction

Understanding collaborative effects, such as combinatorial regula-
tions by different transcription factors (TFs) [1, 2] and epistatic
interactions among multiple loci [3, 4], is essential to make
advancements in biology and medical sciences. However, few
combinations have been discovered because of the difficulty in
overcoming two problems simultaneously: statistical assessment
and computational complexity. When we detect statistically sig-
nificant factors from given multiple factors, a multiple testing
correction must be applied [5]. One of the most widely used
methods is Bonferroni correction [6], which multiplies the raw
P-value by the number of tests. The Bonferroni correction the-
oretically controls the family-wise error rate (FWER) that is the
probability that at least one false discovery happens in multiple
tests. If it is applied to find the significant combinations from all
possible combinations of up to k factors, the number of tested

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_7, © Springer Science+Business Media, LLC, part of Springer Nature 2018

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_7&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_7

84 Aika Terada and Koji Tsuda

combinations increases exponentially to k, and the discovery of
higher-order combinations is extremely unlikely. Moreover, even
with the use of a supercomputer, it is difficult to enumerate the
possible patterns.

Recently, statistical pattern mining methods such as Limitless
Arity Multiple-testing Procedure (LAMP) [7] and its subsequent
studies [8–10] have been developed to overcome these problems.
These methods allow us to enumerate statistically significant com-
binations that are associated with an outcome variable. In this
chapter, we first describe instructions for the use of LAMP, with
application to combinatorial regulatory element discovery. Then,
we introduce its extended software, LAMPLINK [11], that can be
used for genome-wide association study (GWAS).

LAMP is available from http://a-terada.github.io/lamp/ and
is written in Python, except for an external data mining software
that is written in C [12] and runs on Linux, Mac, and Windows.
LAMPLINK is available at http://a-terada.github.io/lamplink/
and is written in C++ and also runs on Linux, Mac, and Windows.

2 LAMP

LAMP is a software for multiple testing correction to detect
combinatorial effect. For example, when provided with the rela-
tionships between transcription factors (TFs) and genes and gene
expression levels, LAMP lists statistically significant combinations
of TFs. LAMP also can be used for the following analyses: (1)
combinations of single-nucleotide polymorphisms (SNPs) associ-
ated with a phenotype, (2) combinations of miRNAs that regulate
gene expression, and (3) combinations of histone acetylations and
methylations that influence gene transcription. The LAMP algo-
rithm calibrates the FWER below a given threshold. Applying this
method to analysis instead of using the Bonferroni correction gives
the following advantages: (1) listing of significant combinations
without an arity limit, (2) an increased sensitivity in comparison
with the Bonferroni correction, and (3) a fast calculation speed.

Here, to provide an example of how LAMP may be applied, we
detect combinations of TFs that regulate gene expression profiles.
Application of LAMP to GWAS analysis using the LAMPLINK
software is presented in Subheading 3.

2.1 Usage LAMP runs by using the following command:
$ python lamp.py -p [p-value-procedure] \

[item-file] [value-file] [significance-level] > [output-file]

LAMP requires four arguments and at least one option. The
[item-file] and [value-file] indicate the input files. The
result is saved to the [output-file]. The input and output file
formats are described in Subheadings 2.2 and 2.3, respectively. The

http://a-terada.github.io/lamp
http://a-terada.github.io/lamplink

Multiple Testing Tool to Detect Combinatorial Effects 85

Table 1
LAMP options

Option Description

-p {“fisher”, “chi”, “u_test”} Select the P-value calculation procedure. “Fisher”
(Fisher’s exact test), “chi” (chi-squared test), or
“u_test” (Mann-Whitney U test) are available.

--alternative = {“greater,” “less,” “two.sided”} Indicate which alternative hypothesis is used. Select
“greater,” “less,” or “two.sided.” The default
setting is “greater.”

--max_comb = [integer] Set the maximum arity of the tested combinations.
The default setting is no limit.

–e [log-file] Change the filename to save the running progress.
The default setting is lamp_log_[date]_[time].txt.

Bolded letters indicate the required option

#gene,TF1,TF2,TF3,TF4
A,1,1,1,0
B,1,1,1,0
C,1,0,0,1
D,0,0,0,0
...

(a) [item-file]

#gene,expression
A,1.5
B,1.2
C,0.9
D,0.8
...

(b) [value-file]

(c) [output-file]/
[eliminated-output-file]

• Statistically significant
combinations

• Raw and adjusted P-values
• Summary statistics

flower.pylamp.py

(d) [loutput]-flower[rank].svg
TF1
0.233

TF3
0.0731

TF2
0.169

0.0301

eliminate_comb.py

Fig. 1 Workflow to detect statistically significant combinations using LAMP. (a) and (b) Examples of [item-
file] and [value-file] files, respectively. (c) Result file. The [output-file] is generated by lamp.py. When we run
eliminate_comb.py for post-processing, the result appears in [eliminated-output-file] with the identical format
to [output-file]. (d) Flower diagram representation generated using flower.py. The central circle represents the
combination of TFs 1, 2, and 3. Each petal corresponds to a single TF. The color represents the P-values, and
statistically significant ones are shown in red

option –p selects the P-value calculation procedure. All LAMP
options are listed in Table 1.

2.2 Input File
Formats

LAMP receives two input files: [item-file] and [value-file].
The [item-file] provides the associations between TFs and

their target genes. This file should be in the CSV format. An
example of this file is presented in Fig. 1a. The first line provides
the names of the TFs. Subsequent lines include the associations
between each of the genes and TFs. The first column gives the gene
name. The remaining columns indicate whether the TF targets that
gene. If the gene is targeted by the TF, the column value is “1.” If
it is not, then the column value is “0.” For example, gene A is the

86 Aika Terada and Koji Tsuda

target gene of TF1, TF2, and TF3. When [item-file] contains
M genes and N TFs, it consists of M + 1 lines and N + 1 columns.

The [value-file] provides the gene expression levels. This
file is in the CSV format and has two columns: the gene name
and the expression level. When LAMP derives the P-value using
the Mann-Whitney U test, the expression levels are any real values.
When Fisher’s exact test or chi-squared test is used, the expression
levels are either 1 if the gene is upregulated or 0 if it is not. An
example of the content in this sample file is shown in Fig. 1b.

The genes listed in the [item-file] and [value-file]
should be identical.

2.3 Output Format LAMP first prints out the analysis settings, including the input file
names, the P-value calculation method applied, and the numbers
of TFs and the genes in the input data. LAMP then presents the
adjusted significance level, the correction factor, and the number
of significant combinations detected. The detected combinations
are then presented, with each line containing the following seven
columns:

• Rank: The rank ordered by the P-value.
• Raw P-value: The P-value calculated using the P-value proce-

dure.
• Adjusted P-value: The adjusted P-value. The value of each

combination contained in the LAMP output is smaller than the
given significance level. Therefore, any combinations presented
are statistically significant.

• Combination: The significant combination of TFs. The TFs
are delimited by commas.

• Arity: The number of elements in the combination.
• # of target rows: The number of target genes of the TF

combination.
• # of positives in the targets/z-score: The value used to

compute the P-value. When Fisher’s exact test was selected for
the calculation, this value represents the number of genes that
are both targeted and upregulated. When the Mann-Whitney
U test was selected, this value is the z-score.

The last line presents information about the calculation time
as follows: time (sec.): Correction factor [float], P-value
[float], and Total [float]. The correction factor, P-value,
and Total indicate the running time to compute the correction
factor, to calculate the P-value of the combinations, and the total
time required to perform these processes, respectively.

2.4 Post-
processing

LAMP shows all significant combinations. However, for some
applications, the raw result may be redundant because the results

Multiple Testing Tool to Detect Combinatorial Effects 87

contain two very similar but slightly different combinations. To
support the interpretation of such results, we prepared the script
“eliminate_comb.py.” This script selects the combination that is
the most significant across all subsets of the combination. For
example, suppose that the combinations A and B are both signifi-
cant, and A has a smaller P-value than that of B. When A includes
B or B includes A, the significance of B would be due to A. By
using eliminate_comb.py, we remove combinations such as B from
the results of LAMP. When the P-values are equal between A and
B, the smaller combination is eliminated.

We perform this post-processing using the following com-
mand:

$ python eliminate_comb.py [output-file] \
> [eliminated-output-file]

This command requires two filenames: [output-file] and
[eliminated-output-file]. The former one is the result file-
name from LAMP. The later one is the filename to output the result
after the elimination procedure.

This script prints “# Non-redundant combinations” in the first
line of the [lamp-output-file]. The other lines are same as the
[lamp-output-file], except that redundant combinations are
removed.

2.5 Flower
Diagrams

LAMP includes a code for visualizing the detected combinations
as flower diagrams, as presented in Fig. 1d. We generate the flower
diagrams using the following command:

$ python flower.py [lamp-output-file].

The [lamp-output-file] is the result file of LAMP.
The flower diagrams are saved in SVG format files named

[lamp-output-file]-flower[rank].svg. [rank] corresponds
to the “Rank” column in [lamp-output-file].

2.6
Demonstrations

Here, we present two small demonstrations of running LAMP. The
first demonstration is a situation in which gene expression levels are
given as numerical values. The other demonstration is a situation
in which gene expression levels are represented in binary, such
as upregulated/unregulated or presence/absence in a clustering
result.

We use the following sample files:

• sample_item.csv: An example file of [item-file].
• sample_expression_value.csv: A sample file of [value-file].

The gene expression levels are numerical values.
• sample_expression_over1.csv: A sample file of [value-file].

The gene expression levels are categorized into 1 or 0.

88 Aika Terada and Koji Tsuda

This dataset contains 15 genes and 4 TFs. All files are available
from the LAMP website (http://a-terada.github.io/lamp/).

2.6.1 Demonstration
1: Mann-Whitney U Test

Here, we demonstrate LAMP using two files: sample_item.csv and
sample_expression_value.csv.

The following command finds all of the significant combina-
tions from the files with a significance level ≤ 0.05:

$ python lamp.py -p u_test \
sample_item.csv sample_expression_value.csv 0.05 \
> sample_u_test_result.txt

When LAMP finishes processing, the result is saved to sam-
ple_u_test_result.txt, which is presented in Fig. 2a.

The metadata is presented in each of the lines starting with
“#,” including the following information:

• Line 1: The LAMP version used.
• Lines 2–5: The analysis settings.
• Line 6: The number of columns and rows in the [item-file]

(sample_item.csv).
• Line 7: The adjusted significance level and the correction

factor. When the raw P-value ≤0.01 (calculated by 0.05/5),
the combination is considered as statistically significant.

• Line 8: The number of significant combinations. We found
one significant combination in this analysis.

The remaining lines present the results, including the
following:

LAMP ver. 2.0.0
item-file: sample_item.csv
value-file: sample_expression_value.csv
significance-level: 0.05
P-value computing procedure: u_test (greater)
of tested elements: 4, # of samples: 15
Adjusted significance level: 0.01, Correction factor: 5 (# of target rows >= 3)
of significant combinations: 1
Rank Raw p-value Adjusted p-value Combination Arity # of target rows z-score
1 0.0060241 0.030121 TF1,TF2,TF3 3 5 2.5107
Time (sec.): Computing correction factor 0.038, Enumerating significant combinations 0.000, Total 0.038

(a)

LAMP ver. 2.0.0
item-file: sample_item.csv
value-file: sample_expression_over1.csv
significance-level: 0.05
P-value computing procedure: fisher (greater)
of tested elements: 4, # of samples: 15, # of positive samples: 7
Adjusted significance level: 0.01, Correction factor: 5 (# of target rows >= 5)
of significant combinations: 1
Rank Raw p-value Adjusted p-value Combination Arity # of target rows # of positives in the targets
1 0.006993 0.034965 TF1,TF2,TF3 3 5 5
Time (sec.): Computing correction factor 0.011, Enumerating significant combinations 0.000, Total 0.011

(b)

TF1
0.233

TF2
0.169

0.0301

0.035

TF3
0.0731

TF1
0.501

TF2
0.175

TF3
0.175

Fig. 2 Examples of LAMP results. (a) and (b) Results when Mann-Whitney U test and Fisher’s exact test are
used as the statistical tests, respectively. The left figure is the output of lamp.py for each test, and the right
one is the corresponding flower diagram representation

http://a-terada.github.io/lamp

Multiple Testing Tool to Detect Combinatorial Effects 89

• The ternary combination of TFs that includes TF1, TF2,
and TF3 is significant. The raw P-value is 0.00602, and the
adjusted P-value is 0.0301.

• The running time is 0.038 s in total.

The flower diagram in Fig. 2a shows the adjusted P-values
for the significant combination. This diagram can be drawn in
the SVG format file sample_u_test_result.txt-flower1.svg using the
following command:

$ python flower.py sample_u_test_result.txt

2.6.2 Demonstration
2: Fisher’s Exact Test

To demonstrate LAMP using Fisher’s exact test, we use the two
sample files: sample_item.csv and sample_expression_over1.csv.
By changing the file “sample_expression_value.csv” to “sam-
ple_expression_over1.csv” and by changing “-p u_test” to “-p
fisher” in the demonstration of Mann-Whitney U test, we can
perform LAMP using Fisher’s exact test. The following command
finds all significant combinations from the files with a significance
level ≤ 0.05:

$ python lamp.py -p fisher sample_item.csv \
sample_expression_over1.csv 0.05 > sample_fisher_result.txt

When LAMP finishes processing, the result is saved to sam-
ple_fisher_result.txt as presented in Fig. 2b. The eight lines which
start with “#” are similar to those from the Mann-Whitney U test
result file in Fig. 2a. This file presents the results, including the
following:

• The raw P-values of statistically significant combinations. In
this case, combinations P-values ≤0.01 (calculated by 0.05/5)
are considered as statistically significant.

• There is one significant combination. The ternary combination
of TFs that includes TF1, TF2, and TF3 is significant. The raw
P-value is 0.00699, and the adjusted P-value is 0.0350.

• The running time is 0.011 s in total.

The diagram in Fig. 2b shows the adjusted P-values that are
relevant to the statistically significant combination. This diagram
can be drawn in sample_fisher_result.txt-flower1.svg using the
following command:

$ python flower.py sample_fisher_result.txt

3 LAMPLINK

LAMPLINK [11] is a version of LAMP that is specific for ana-
lyzing genetics data and can detect statistically significant epistatic
interactions of two or more SNPs from GWAS data. This software
can be used in the same way as the widely used GWAS analysis

90 Aika Terada and Koji Tsuda

Table 2
LAMPLINK options

(a) Options to detect statistically significant SNP combinations

Option Description

--lamp Detect combinatorial effect using LAMP

--file (or --bfile) [filename] Input filename without the extension

--model-rec (or model-rec) Select genetic model from dominant
exclusive model (model-dom) or recessive
exclusive model (model-rec)

--out [filename] Output filename (default is “lamplink”)

--fisher Use Fisher’s exact test as the statistical
significance test (default is the
chi-squared test)

--utest Use Mann-Whitney U test as the statistical
significance test (default is the
chi-squared test)

--alternative {“greater,” “less,” “two.sided”} Select which alternative hypothesis is used
from “greater,” “less,” or “two.sided”
(default is two.sided)

--ci [float] Output confidence interval for CMH odds
ratios

--sglev [float] Set statistical significance level used in
LAMP (default is 0.05)

--upper [float] Set maximum MAF value (default is 0.1)

(b) Options to eliminate redundant SNP combinations

Option Description

--lamp-ld-remove Eliminate SNP combinations in LD

--file (or --bfile) [filename] Input filename without the extension

--comb < filename> Filename generated by the --lamp option
without the extension

--out [filename] Output filename (default is “lamplink”)

--lamp-r2 Set the threshold for the r2 (default is 0.8)

Bolded letters indicate the required options

software, PLINK version 1.07 [13]. In addition to the functions of
PLINK, LAMPLINK can detect epistatic interactions with LAMP.
We can apply LAMPLINK to a PLINK analysis pipeline simply by
replacing plink with lamplink and adding the --lamp option.

3.1 Usage The use of LAMPLINK is identical to that of PLINK (http://
zzz.bwh.harvard.edu/plink/), except that there are LAMPLINK-
specific options. Here, we explain the LAMPLINK-specific options
presented in Table 2.

http://zzz.bwh.harvard.edu/plink

Multiple Testing Tool to Detect Combinatorial Effects 91

Input: PLINK format files (<in_filename>)

Output: Significant SNP combinations
(<lamp_out_filename>)

Detection of SNP combinations

Elimination of redundant SNP combinations

Post-processing

$ lamplink --file [filename] \
--out [lamp_out_filename]
--lamp --model-dom

$ lamplink --file [filename] \
--out [out_filename]
--lamp-ld-remove
--comb [lamp_out_filename]

Procedure 1

Procedure 2

Fig. 3 Workflow to detect statistically significant SNP combinations using LAM-
PLINK

The - -lamp option with - -model-dom (or - -model-rec)
can be used to enumerate statistically significant SNP combinations
(Procedure 1 in Fig. 3). Table 2(a) represents the relevant
options. The input and output filenames are specified by the
--file (or --bfile for binary format) and --out options,
respectively. When --model-dom is used, LAMPLINK detects
statistically significant combinations of SNPs according to a
dominant exclusive model, while --model-rec uses a recessive
exclusive model. The details of these two genetic models
are described by Terada et al. [11]. LAMPLINK results are
exported to the output files, [lamp_out_filename].lamp and
[lamp_out_filename].lamplink. The output file formats are
described in Subheading 3.3.

Like LAMP, LAMPLINK provides a set of options to eliminate
redundant SNP combinations with the use of linkage disequilib-
rium (LD) region estimation. LAMPLINK may detect combina-
tions of SNPs that are in the same LD region in Procedure 1 in
Fig. 3. Because such combinations are redundant and can hinder
the interpretation of SNP-phenotype associations, LAMPLINK
provides the options, which are presented in Table 2(b), for filter-
ing out these uninformative combinations (Procedure 2 in Fig. 3).
Using --lamp-od-remove option eliminates SNP combinations
whose members have an r2 that is higher than the user-specified
threshold, assuming that these SNP combinations are in the same
LD region. If all the r2 scores computed for the SNP pairs
in each chromosome are higher than the threshold, then that
SNP combination is removed. The results are saved to two files,
[out_filename].lamp and [lamp_out_filename].lamplink.

92 Aika Terada and Koji Tsuda

3.2 Input File
Formats

Input files should be set with the --file or --bfile option.
For inputs using --file [filename], LAMPLINK requires
two files: [filename].ped and [filename].map. For inputs
using --bfile, [filename].bed, [filename].bim, and
[filename].fam files are required. For detailed descriptions of
the required formats, please refer to the PLINK v1.07 instructions
(http://zzz.bwh.harvard.edu/plink/).

3.3 Output File
Formats

LAMPLINK reports its results in two output files, [lamp_out_
filename].lamp and [lamp_out_filename].lamplink. The
former file reports all SNP combinations that are statistically
significantly associated with the phenotype. The latter file reports
detailed information about each SNP in a format similar to the
result generated by PLINK for association analysis.

The SNP combinations that are detected by LAMPLINK
are summarized in the output file [lamp_out_filename].lamp.
Each line represents an SNP combination and consists of four
columns:

• COMBID: The combination ID corresponding to the COM-
BID in the [lamplink].lamplink file.

• Raw_P: The P-value of the SNP combination.
• Adjusted_P: The adjusted P-value calculated by LAMP.
• COMB: The SNPs that are members of the combination.

The [lamp_out_filename].lamplink file presents detailed
information about each of the SNPs in the input dataset. Each
line contains the following columns, irrespective of the statistical
significance test applied:

• CHR: The chromosome number.
• SNP: The SNP name.
• A1 and A2: The names of the minor and major alleles.
• Test: The genetic model selected (DOM, dominant exclusive

model; REC, recessive exclusive model). This output depends
on the input option.

• AFF: The numbers of case individuals that have A1 and A2
alleles, respectively.

• UNAFF: The numbers of control individuals that have A1 and
A2 alleles, respectively.

• P: The P-value of the SNP.
• OR: The odds ratio.
• COMB[ID]: Presence or absence of the SNP in the combi-

nation COMBID (presence: 1, absence: 0). When x combina-
tions are detected, then x columns are generated.

http://zzz.bwh.harvard.edu/plink

Multiple Testing Tool to Detect Combinatorial Effects 93

When the chi-squared test is applied, this file contains the
following additional columns:

• CHSQ: chi-squared score
• DF: degrees of freedom

When the --ci x option is used, the [lamplink].lamplink
file contains the following additional columns:

• Lx: lower bound of x% confidence interval for the odds ratio
• Ux: upper bound of x% confidence interval for the odds ratio

3.4
Demonstrations

Here, we present a case-control analysis using LAMPLINK. The
example dataset consists of two input files, as shown in Fig. 4a, b.
The first one is lamplink_sample.map, which is an annotation
file for each SNP locus being investigated. The other is lam-
plink_sample.ped, which provides sample information including
phenotype and genotype.

COMBID Raw_P Adjusted_P COMB
COMB1 0.006993 0.034965 rs7817762,rs2631899,rs1841195

(c) example.lamp

CHR SNP A1 A2 TEST AFF UNAFF P OR COMB1
8 rs7817762 2 1 DOM 5/2 1/7 0.0405594 17.5 1
8 rs2631899 2 1 DOM 5/2 2/6 0.131935 7.5 1
8 rs1841195 2 1 DOM 5/2 1/7 0.0405594 17.5 1
8 rs1564125 2 1 DOM 2/5 4/4 0.608392 0.4 0

(d) example.lamplink

8 rs2631899 0 21169654
8 rs7817762 0 21164864
8 rs1841195 0 21190603
8 rs1564125 0 32080296

(a) example.map

A A 0 0 1 2 1 2 2 1 2 1 1 1
B B 0 0 1 2 2 1 2 1 2 1 1 1
C C 0 0 1 1 2 1 1 1 1 1 2 1
D D 0 0 2 1 1 1 1 1 1 1 1 1
…
O O 0 0 2 1 1 1 1 1 1 1 1 1

(b) example.ped

Fig. 4 Example files to conduct case-control analysis using LAMPLINK. (a) and (b) Input files that are given by
the --file option. (c) and (d) Output files that are generated by LAMPLINK. The example.lamp file represents
statistically significant combinations, and the example.lamplink file presents the details of the SNPs contained
in the given dataset

94 Aika Terada and Koji Tsuda

The following command enumerates the statistically significant
SNP combinations using Fisher’s exact test. The significance level
is set to 0.05.

$./lamplink --file ./example/lamplink_sample --lamp \
model-dom --sglev 0.05 --upper 0.5 \
--out example --fisher

The LAMPLINK results are presented in example.lamp and
example.lamplink output files. These are shown in Fig. 4c, d.
Figure 4c indicates that one combination of SNPs (rs7817762,
rs2631899, and rs1841195) is significantly associated with the
phenotype after multiple testing correction. The raw and adjusted
P-values are 0.006993 and 0.034965, respectively. Figure 4d
presents detailed information about each of the SNPs in the
dataset. Column P indicates the P-value for each SNP. If the value
in COMB1 is 1, then this SNP is a member of the COMB1 SNP
combination presented in Fig. 4c.

References

1. Baudry A, Heim MA, Dubreucq B et al (2004)
TT2, TT8, and TTG1 synergistically specify the
expression of BANYULS and proanthocyanidin
biosynthesis in Arabidopsis thaliana. Plant
J 39:366–380

2. Schlesinger J, Schueler M, Grunert M et al
(2011) The cardiac transcription network mod-
ulated by Gata4, Mef2a, Nkx2.5, Srf, histone
modifications, and microRNAs. PLoS Genet
7:e1001313

3. Carlborg O, Haley CS (2004) Epistasis: too
often neglected in complex trait studies? Nat
Rev Genet 5:618–625

4. Phillips PC (2008) Epistasis–the essential role
of gene interactions in the structure and evolu-
tion of genetic systems. Nat Rev Genet 9:855–
867

5. Noble WS (2009) How does multiple test-
ing correction work? Nat Biotechnol 27:1135–
1137

6. Bonferroni CE (1936) Teoria statistica delle
classi e calcolo delle probabilità. Pubbl del R
Ist Super di Sci Econ e Commer di Firenze
8:3–62

7. Terada A, Okada-hatakeyama M, Tsuda K, Sese
J (2013) Statistical significance of combinato-
rial regulations. Proc Natl Acad Sci U S A
110:12996–13001

8. Terada A, Tsuda K, Sese J (2013) Fast Westfall-
Young permutation procedure for combinato-

rial regulation discovery. In: 2013 IEEE Inter-
national Conference on Bioinformatics and
Biomedicine. pp 153–158

9. Sugiyama M, López FL, Kasenburg N, Borg-
wardt KM (2015) Significant subgraph min-
ing with multiple testing correction. In: 2015
SIAM International Conference on Data Min-
ing. pp 37–45

10. Llinares-López F, Sugiyama M, Papaxanthos
L, Borgwardt K (2015) Fast and memory-
efficient significant pattern mining via permu-
tation testing. In: Proceedings of the 21th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp
725–734

11. Terada A, Yamada R, Tsuda K, Sese J (2016)
LAMPLINK: detection of statistically signif-
icant SNP combinations from GWAS data.
Bioinformatics 32:3513–3515

12. Uno T, Asai T, Uchida Y, Arimura H (2003)
LCM: an efficient algorithm for enumerat-
ing frequent closed item sets. In: Workshop
on Frequent Itemset Mining Implementations
(FIMI’03)

13. Purcell S, Neale B, Todd-Brown K et al (2007)
PLINK: a tool set for whole-genome associa-
tion and population-based linkage analyses. Am
J Hum Genet 81:559–575

Chapter 8

SiBIC: A Tool for Generating a Network of Biclusters Captured
by Maximal Frequent Itemset Mining

Kei-ichiro Takahashi, David A. duVerle, Sohiya Yotsukura,
Ichigaku Takigawa, and Hiroshi Mamitsuka

Abstract

Biclustering extracts coexpressed genes under certain experimental conditions, providing more precise
insight into the genetic behaviors than one-dimensional clustering. For understanding the biological
features of genes in a single bicluster, visualizations such as heatmaps or parallel coordinate plots and tools
for enrichment analysis are widely used. However, simultaneously handling many biclusters still remains a
challenge. Thus, we developed a web service named SiBIC, which, using maximal frequent itemset mining,
exhaustively discovers significant biclusters, which turn into networks of overlapping biclusters, where
nodes are gene sets and edges show their overlaps in the detected biclusters. SiBIC provides a graphical user
interface for manipulating a gene set network, where users can find target gene sets based on the enriched
network. This chapter provides a user guide/instruction of SiBIC with background of having developed
this software. SiBIC is available at http://utrecht.kuicr.kyoto-u.ac.jp:8080/sibic/faces/index.jsp.

Key words Gene expression, Biclustering, Frequent itemset mining, Gene set network, Gene
enrichment analysis

1 Introduction

Gene expression matrix (“genes” × “experimental conditions”)
can be clustered by either of the two sides [1, 2], while expression
patterns can usually be grouped with only part of rows or columns
(neither the entire rows nor columns). This leads to the idea of
biclusters, which consist of subgroups of rows and subgroups of
columns.

In general, from an expression matrix, biclustering algorithms
produce many biclusters [3, 4], causing a serious issue of visual-
izing them. To solve this issue, biclusters are visualized in many
ways, such as heatmaps and parallel coordinate plots [5–8].
However they have limitation on scalability, particularly for many
overlapping biclusters.

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_8, © Springer Science+Business Media, LLC, part of Springer Nature 2018

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_8&domain=pdf
http://utrecht.kuicr.kyoto-u.ac.jp:8080/sibic/faces/index.jsp
https://doi.org/10.1007/978-1-4939-8561-6_8

96 Kei-ichiro Takahashi et al.

Another type of visualization is graph, which is more promising
on handling many biclusters. Furby [9] displays overlapping
biclusters as a graph, where a node corresponds to a heatmap
(a bicluster itself) and edges correspond to rows and columns
shared by two heatmaps. BicOverlapper [10] visualizes overlapping
biclusters by a graph, in which each node represents a gene or a
condition and edges are grouped by one or more biclusters. We
developed SiBIC [11] by defining a weighted graph called as a gene
set network on overlapping biclusters, where each node is a gene set
derived from overlapping biclusters and each edge corresponds to
the difference between two nodes. A gene set network removes
duplications of genes, which share experimental conditions. This
makes gene set networks more compact than Furby. Similarly, a
gene set network is more compact (and scalable) than a network by
BicOverlapper, because each node of gene set networks is a gene
set, while each node of BicOverlapper is a single gene or a single
condition. SiBIC also provides a GUI application for visualizing
and manipulating gene set networks, to allow enrichment analysis
in a more flexible manner than using only one bicluster.

In SiBIC, a bicluster is defined as genes that are coexpressed
under each experimental condition. Figure 1b shows an example

Fig. 1 (a) In SiBIC, genes having similar expression values within MAX_DIFF are dealt as one item. Note
that items can have different numbers of genes. The figure assumes that each item is taken from different
experimental conditions and the five items (item1 to item5) have the common genes (gene3 to gene5). The
minimum number of common genes are specified by parameter MIN_ROW (in the bottom of the right figure
(b)). SiBIC captures such items as a frequent itemset and enumerates all possible frequent itemsets from a
given expression dataset. (b) The frequent itemset in (a) can be seen as a bicluster consisting of the common
three genes and the five experimental conditions. This bicluster shows a coexpressed pattern in the top.
MIN_ROW and MIN_COL are the parameters which specify the size of biclusters: minimum number of genes
and minimum number of conditions, respectively

SiBIC for Generating a Network of Biclusters 97

of such biclusters, where values are similar in each column. This
bicluster reveals genes which express similarly under certain experi-
mental conditions. To exhaustively find this type of biclusters from
a given expression dataset, SiBIC employs frequent itemset mining
(FIM) [12]. SiBIC regards every set of genes sharing similar
expression values as one item, and frequent itemsets enumerated by
FIM as biclusters. SiBIC generates biclusters from FIM and then a
gene set network from biclusters [11]. This book chapter provides
a comprehensive user instruction of SiBIC.

2 Materials

The input of SiBIC is gene expression data, which is a matrix, in
which rows are genes and columns are experimental conditions. We
describe the format of input files in Subheading 3.2.1. Note that
SiBIC exhaustively enumerates all possible significant biclusters
and so is not necessarily designed for dealing with large-scale
expression datasets. We recommend that a subset of interest should
be extracted from the original gene expression dataset.

3 Methods

3.1 Overview
of SiBIC

Our method consists of roughly four steps: (1) enumerating all
possible biclusters as frequent itemsets and assigning p-values
to them, (2) merging the overlapping biclusters, removing their
redundancy, (3) generating gene set networks from merged biclus-
ters, and (4) analyzing gene functions by using the generated gene
set networks. Figure 2(1) to (4) show a schematic flow of the above
(1) to (4), respectively.

3.1.1 Enumerating
Biclusters

Our approach produces multiple, overlapping biclusters by fre-
quent itemset mining (FIM). SiBIC first aggregates genes with
similar values into items per experimental condition, and then FIM
(MAFIA [13]) is run on the database of all items. Figure 1a shows
an explanatory example of a frequent itemset, which can be seen as
a bicluster, as shown in Fig. 1b.

SiBIC computes empirical p-values to rank generated biclus-
ters in terms of how significantly row vectors in biclusters are
correlated. For each bicluster (with N genes and M experimental
conditions), 500,000 matrices of the same size are randomly
generated out of the input gene expression matrix. To generate an
empirical distribution for a bicluster, SiBIC computes the following
test statistic T over each random matrix:

T = 1

N

N∑

i=1

corr(gi, ḡ), where ḡ = 1

N

N∑

i=1

gi (1)

98 Kei-ichiro Takahashi et al.

Fig. 2 A schematic flow of SiBIC: (1) Enumerating all biclusters by maximal frequent itemset mining, where
each rectangle represents a maximal frequent itemset (i.e., a bicluster). Colors stand for similarities in
expression values. (2) Merging overlapping biclusters with exactly the same conditions if they keep statistical
significance. (3.1) and (3.2) Generating gene set networks from overlapping biclusters. Each node in the
network indicates a newly redefined bicluster based on the overlapping submatrices and nodes from each
bicluster form a complete subgraph. (4) Analyzing gene functions by using the obtained network

where gi is an M-dimensional row vector and corr(·, ·) is Pearson
correlation coefficient. SiBIC then calculates the T score of the
bicluster to give its empirical p-value on the distribution.

3.1.2 Merging
Biclusters

Maximal FIM enumerates all possible biclusters of the largest
frequent itemsets, while they can be redundant in the sense that
they can be still heavily overlapped with each other. SiBIC merges
biclusters that have exactly the same experimental conditions, as
long as the significance as computed in Eq. (1) is kept.

3.1.3 Gene Set
Networks

To visualize the biclusters, we use gene set networks, each being
a weighted graph, where a node corresponds to a coexpressed
gene set and an edge indicates the difference of experimental
conditions between two nodes. SiBIC generates gene set networks
from overlapping biclusters as follows: (1) All genes in overlapping
biclusters are first divided into disjoint gene sets so that respective
sets are shared by the same biclusters. (2) SiBIC then treats each
set as a node, and an edge connects two nodes if both nodes are
taken from the same bicluster, where the weight of an edge is the
number of biclusters containing the genes of the two nodes of the

SiBIC for Generating a Network of Biclusters 99

Fig. 3 Construction of a gene set network: (a) Three biclusters are overlapping with each other, for eight genes
(G1 to G8) and six conditions (C1 to C6). (b) The three overlapping biclusters in (a) are converted into a graph
with five nodes, according to the overlapping submatrices. Each node consists of genes shared by the same
biclusters, resulting in a newly redefined bicluster with relevant conditions. If two nodes are from the same
bicluster, they are connected by an edge weighted by the number of biclusters containing the genes of both
nodes

edge. Figure 3 shows an explanatory example of building a gene
set network (b) from overlapping biclusters (a). From Fig. 3b, we
can easily see that each node represents a newly redefined bicluster
with an expression pattern.

A gene set network has the following three properties:

1. Reversibility: a gene set network exhaustively keeps overlap-
ping bicluster information, by which the original biclusters can
be reproduced from a gene set network.

2. Compactness: each node is a gene set (a bicluster), by which a
gene set network is more compact than usual gene networks.

3. Interpretability: an edge corresponds to the difference between
two node of this edge, by which nodes can be interpreted as
coexpressed gene units.

3.2 Web Service In this section, we describe the usage of SiBIC (see Note 1),
which has two steps: (1) selecting an expression dataset, (2)
inputting parameters. In the first step, an expression dataset is
uploaded or a SOFT file is selected from the GEO repository [14],
which will be described in Subheading 3.2.1. In the second step,
Subheading 3.2.2 describes parameters details. Subheadings 3.2.3
and 3.2.4 explain how to analyze and interpret biclusters and gene
set networks.

3.2.1 Expression
Dataset

The top page of SiBIC provides the following two interfaces to
send an expression dataset to the server:

100 Kei-ichiro Takahashi et al.

Fig. 4 The top page of SiBIC: a user can upload a local expression file or select a SOFT file from the GEO
repository as the input of SiBIC

File uploading interface (Fig. 4a):
A local plain text file with the extension .txt or .text can be
uploaded by clicking the “Choose File” button to pick up a local
file and then clicking the “submit” button. The file must be a
tab-delimited file, where the maximum file size is 15 MB and
the file format must have sample identifiers in the first line and
a gene identifier followed by expression values in the following
lines. Lines starting with a symbol “#” or “!” are ignored. Note
that no identifier can start with a symbol “#” or “!”. Missing
expression values can be entered as null or na.

GEO dataset search interface (Fig. 4b):
A query in the text field can be typed and the “search” button
can be clicked to list the matched SOFT files from the GEO
database [14]. Then the “select” button can be clicked to
obtain the corresponding SOFT file. Query syntax should follow
ESearch format [15], where a space should be replaced by a plus
sign “+” if required in a query term (see Note 2).

3.2.2 Parameters Submitting the input expression dataset directs to the parameter
setting page. Figure 5 shows a screenshot of the page, where
MIN_ROW, MIN_COL, and MAX_DIFF are the main three
parameters, which define biclusters. MIN_ROW and MIN_COL
specify the minimum size of biclusters, and MAX_DIFF gives
the maximum range of values in each column. It is not easy for
users to decide MAX_DIFF, because a proper range depends upon
experimental conditions. Thus, instead of MAX_DIFF, SiBIC has

SiBIC for Generating a Network of Biclusters 101

Fig. 5 The parameter setting page of SiBIC: After selecting a dataset, SiBIC leads the user to this page, where
the user can specify a set of parameters such as MIN_ROW, BIN and MIN_COL

BIN as a parameter to easily compute MAX_DIFF. Below are
all parameters to be specified in the parameter input interface of
SiBIC.

1. MIN_ROW: specifies the minimum number of genes in biclus-
ters. Computation time becomes heavier as MIN_ROW is
smaller, because the number of frequent itemsets (i.e., biclus-
ters) is larger. An integer of 5 or larger is the possible input.
The default value is 10.

2. BIN: defines MAX_DIFF, which is (MAX-MIN)/BIN, where
MAX and MIN are the maximum and minimum expression
values per experimental condition, respectively. SiBIC han-
dles the combination of (1) a gene set with values within
MAX_DIFF and (2) an experimental condition as an item
for maximal FIM. Note that assuming that some Gaussian
distribution over expression values, the number of genes in
one item is larger as the MAX_DIFF is wider, particularly
including the mean expression value. To remove outliers,
SiBIC internally modifies the distribution’s tails, by replacing
all expression values falling outside of (μ̂ − 3σ̂ , μ̂ + 3σ̂) with
μ ± 3σ̂ , by which MAX = μ̂ + 3σ̂ , MIN = μ̂ − 3σ̂ , and
MAX_DIFF = 6σ̂ / BIN. Note that smaller BIN allows larger
biclusters with less similarity in expression values and more
experimental conditions. The default value is 7.

3. MIN_COL: specifies the minimum number of experimental
conditions in biclusters. After running maximal FIM and
before computing p-values, biclusters with a smaller number
of experimental conditions than MIN_COL are filtered out.
The default value is 3.

4. SD_COEFF: is used to remove expression values (for each
column) with only little changes and biologically insignifi-
cant. Genes with expression values within SD_COEFF×SD

102 Kei-ichiro Takahashi et al.

(SD:standard deviation) are removed. Alternatively, a user
can set SD_COEFF=0.0 and specify a range of interest by
PERCENTILE.

5. ABS: is a boolean parameter to treat expression values as
absolute values. The default value is “false” (unchecked in the
check button).

6. TEST: is a parameter to choose a method for computing p-
values, out of three choices:

“genes”: p-values are computed in terms of how much genes
in a bicluster are correlated each other by Eq. (1).

“conds”: p-values are computed in terms of how much experi-
mental conditions in a bicluster are correlated each other.

“both”: both genes and conditions are used.

When TEST is set, the cutoff value for p-values can also be
specified. The default setting is “genes” with the cut-off value
of 0.01.

7. GENES: is a parameter to specify genes of interest. The input
is identifiers (separated by “,”) of genes, which should be
included in biclusters. If this parameter is used, biclusters with-
out the specified genes are ignored, making the computation
far faster.

8. MERGER: is a boolean parameter to skip the merging process.
The default value is “true” (checked in the check button).

Another possible input is an email address to receive a notifica-
tion e-mail immediately after the result is obtained. After inputting
all parameters and clicking “confirm”, “run” can be clicked if
there are no problems on the input parameter values; otherwise
click “back” to go back to the parameter input interface to input
parameter values again. By clicking “run” in the confirmation page,
SiBIC moves to the running status page as shown in Fig. 6, where
the status of computation (see Note 3) can be shown. In the
running status page, the “cancel” button to cancel the current job
can be clicked. The URL to the page showing results, provided
on the running status page, is recommended to be saved as a
bookmark. Note that this URL is the only way to access the result,
if the email address has not been given in the parameter setting
page.

Practically several different parameter sets are recommended
to be tried to find a good balance to obtain favorable biclusters
without spending much computation time. Computation time
directly depends on the number of biclusters to be generated,
which further depends on two factors: (1) the size of items (the
number of genes in each item) and (2) the number of items (the
size of an expression matrix). We mention a couple of points
regarding them below.

SiBIC for Generating a Network of Biclusters 103

Fig. 6 The running status page of SiBIC: In this page, the user can check the running status and cancel the
current job

1. Size of items: Simply smaller BIN (the larger size of items)
can generate a larger number of biclusters, taking longer
computation time. Also with a larger number of genes in
one item (which results in being less similar each other),
candidate biclusters can be less statistically significant, despite
longer computation time (since the number of experimental
conditions of biclusters can be larger). Thus several values of
MIN_ROW and BIN should be tried, where a larger value
of MIN_ROW results in less computation time, and a larger
value of BIN can also reduce the computation time by making
the size of items smaller and expression values more similar.
The progress of the running job can be checked through the
running status page (Fig. 6). If the progress is very slow, the
job can be canceled to try another parameter set (see Note 4).

2. Number of items: SiBIC produces O(MN) items for M genes
and N experimental conditions. The search space of FIM
is larger due to a larger number of items, meaning that a
larger expression dataset is heavier in computation. A simple
way of making an expression dataset smaller is to remove
genes by making SD_COEFF larger (or PERCENTILE). Also
another way is to specify particular genes of interest by using
GENES, by which SiBIC focuses on only biclusters with those
genes. Furthermore, if the expression dataset has replicates of

104 Kei-ichiro Takahashi et al.

experimental conditions or genes, they should be removed (by
taking the average over the replicated, etc.) to make the input
file smaller (see Note 5).

3.2.3 Biclusters The result page shown in Fig. 7a can be accessed through the
bookmark link or the link in the notification email mentioned
in Subheading 3.2.2. The result page has two parts: “Bicluster
Information” and “Gene Set Networks for Overlapping Biclus-
ters.” Below we explain “Bicluster Information” and “Gene Set
Networks for Overlapping Biclusters” will be explained in the next
section.

“Bicluster Information” shows a table of biclusters with their
sizes, heights, widths and p-values, where biclusters can be shown
by clicking a triangle icon right beside the column titles. Also, the
size of biclusters can be adjusted by the “Top” dropbox or by
searching biclusters with genes specified in the query box right
above the table. An individual page for the bicluster shown in
Fig. 7b can be accessed by clicking each ID in the table. The
individual page contains a heatmap, a line chart, and a numerical
table of the bicluster. Moreover, SiBIC provides an interface for
enrichment analysis by using DAVID (Database for Annotation,
Visualization and Integrated Discovery) [16] on the bottom of the
page. Enrichment analysis can be done for the bicluster, through
this interface, as follows:

1. Select a proper “Query Type” out of ID_REFF, NAME_ID,
ACC, and GENE_ID each of which corresponds to a column
of the bicluster table above.

2. Select a proper “Gene Type” defined in DAVID such as
ENTREZ_GENE_ID, which must be a whole background
containing “Query Type.”

3. Select a “Tool” such as “Functional Annotation Chart” for
annotation analysis.

4. Select “Annotations” such as GOTERM_BP_FAT and
KEGG_PATHWAY, and then click the DAVID logo. If
“Query Type” and “Gene Type” are a correct combination,
then SiBIC opens a DAVID page to show the result.

3.2.4 Gene Set
Network Viewer

“Gene Set Networks for Overlapping Biclusters” shows a table of
gene set networks. In this table, the “GNS file” column allows
to download .gns files to run with the GUI application to be
described below. The “overlap” column shows the number of
overlapping biclusters from which a gene set network is made,
the “genes” column shows the number of genes in the network,
the “vertex” column shows the number of nodes, and the “edge”
column shows the number of edges.

Figure 8 shows the GUI application for displaying gene set
networks which enables to conduct enrichment analysis in a more

SiBIC for Generating a Network of Biclusters 105

Fi
g.

7
Th

e
re

su
lt

pa
ge

s:
(a

)T
he

re
su

lt
pa

ge
co

ns
is

ts
of

a
ta

bl
e

of
bi

cl
us

te
rs

an
d

a
ta

bl
e

of
ge

ne
se

t
ne

tw
or

ks
.(

b)
Th

e
in

di
vi

du
al

pa
ge

of
a

bi
cl

us
te

r
sh

ow
s

a
he

at
m

ap
,a

lin
e

ch
ar

t,
an

d
a

nu
m

er
ic

al
ta

bl
e.

Th
is

pa
ge

al
so

ha
s

an
in

te
rfa

ce
of

DA
VI

D
at

th
e

bo
tto

m

106 Kei-ichiro Takahashi et al.

Fig. 8 Gene set network viewer has the left and right panes. The left pane shows a gene set network, and the
right pane shows information on selected nodes in the network

flexible manner than using one bicluster only. For example, genes
in the node with the maximum degree and its neighboring nodes
or genes in the most significant bicluster can be selected. The
application is available from the “Get gene set network viewer”
button on the result page (right under the table of gene set
networks) in Fig. 7a. The GUI is developed using Java 8 Swing and
JUNG (Java Universal Network/Graph Framework) library [17].
The application can be launched by the following command

java –jar sibic_gsn_app.jar

or by right-clicking the jar file to open a dialog box, which will
show a menu item for launching the application. The input of the
application is a GNS (Gene Set Network) file, which is a binary file
containing information about a gene set network. GNS files can be
downloaded by clicking “download” in the “GNS file” column of
the gene set networks’ table in the result page. JRE (Java Runtime
Environment) 1.8 or later must be installed on the local machine
before launching the application.

SiBIC for Generating a Network of Biclusters 107

As shown in Fig. 8, the GUI has left and right panes:

Left pane: has a drawing controller on the top and a network viewer
on the bottom. In the top, the network “LAYOUT” can be
selected out of four types: “Circle,” “KK,” “FR,” and “ISOM.”
The default layout is “Circle,” which positions nodes equally
spaced on a regular circle, while “KK,” “FR,” and “ISOM” use
the Kamada–Kawai algorithm [18], the Fruchterman–Reingold
force-directed algorithm [19], and a layout algorithm based on
Meyer’s self-organizing graph methods [20], respectively. The
diameter of nodes indicates the number of genes.
The “MODE” of the network viewer can be further selected,
where “Picking” allows to pick and drag the nodes of interest,
while “Transforming” enables to drag the whole network. Both
modes allow to zoom in or out the network view by scrolling
with the mouse wheel. Subnetworks can be filtered out by
adjusting “VERTEX SIZE” or “EDGE WEIGHT.”
By unchecking the “CONNECTED” box above, the network
viewer can show unconnected networks. Clicking a vertex under
the “Picking” mode updates the information in the right pane.
A helpful function of this side is that multiple nodes are clickable
at the same time by dragging the mouse to make a rectangle so
that it encompasses the multiple nodes, and clicking one of the
selected nodes.

Right pane: has four tabs, “SELECTED,” “BICS,” “GENES,”
and “NODES,” to display various information of the gene set
network in the left pane.
“SELECTED” shows information on the selected nodes in
the network, with “SELECTED NODES INFO” in the top
and “NEIGHBORING NODES” in the bottom. “SELECTED
NODES INFO” further consists of four subtabs, “GENE,”
“COND,” “BIC” and “HEATMAP.” “GENE” (Fig. 9a) shows
a table of genes in the selected nodes, where data can be
copied to the clipboard by dragging target cells and clicking the
cells. “COND” (Fig. 9b) and “BIC” (Fig. 9c) show a table of
experimental conditions and a table of biclusters, respectively.
“HEATMAP” (Fig. 9d) shows a list of heatmaps for the respec-
tive nodes. These heatmaps are not those of merged biclusters
but of Fig. 3b. Finally “NEIGHBORING NODES” displays a
list of neighboring nodes of the selected nodes.
“BICS,” “GENES,” and “NODES” provide the information on
the entire network in the left pane. “BICS” shows a table of all
biclusters of the network. “GENES” shows a table of all genes
in all nodes in the network. “NODES” shows a table of features
of all nodes, such as the degree and weighted degree.

By using the left and right panes, genes of interest can be
picked up to check, following the basic flow of manipulating a gene
set network:

108 Kei-ichiro Takahashi et al.

Fig. 9 By clicking “SELECTED” in the right pane of Fig. 8, (a) GENE, (b) COND, (c) BIC, and (d) HEATMAP
are displayed in the pane. GENE and COND show the list of genes and conditions in the selected nodes,
respectively. BIC shows the information on biclusters related to the selected nodes. HEATMAP shows a list of
heatmaps of the selected nodes

1. Click node(s) in the network viewer (the left pane in Fig. 8).
2. Find genes of interest in the information tables (the right pane

in Fig. 8).
3. Copy the genes into your clipboard by right-click and run a

third-party tool to perform functional analysis.

Here we describe two detailed scenarios for functional analysis:

1. Finding particular genes in the most significant bicluster in a
gene set network
(a) Click any node in the network in the left pane, to activate

the right pane.
(b) Click “BICS” in the right pane and then click “P(GENE)”

(p-values) to sort the table.
(c) Click a cell in the row of the most significant bicluster.
(d) Open a popup by right-click and select “Find nodes.”
(e) Click the nodes highlighted in aqua blue in the network

viewer.
(f) Click “SELECTED” in the right pane to see the informa-

tion such as gene names and heatmaps.
(g) Copy the target genes in “GENE” to the clipboard by

right-click for functional analysis.

SiBIC for Generating a Network of Biclusters 109

2. Finding particular genes in the node with the maximum
weighed degree and its neighboring nodes
(a) Click any node in the network viewer.
(b) Click “NODES” and then click “W.DEG” (weighted

degree) to sort the table.
(c) Click a cell in the row of the node with the maximum

weighted degree.
(d) Open a popup by right-click and select “Find nodes.”
(e) Click the nodes highlighted in aqua blue in the network

viewer.
(f) Click “SELECTED” in the right pane to see the informa-

tion such as gene names and heatmaps.
(g) Copy the target genes from “GENE” and “NEIGH-

BORING NODES” to the clipboard by right-click for
functional analysis.

4 Notes

1. SiBIC is available at http://utrecht.kuicr.kyoto-u.ac.jp:8080/
sibic/faces/index.jsp. For a quick start, SiBIC has a tutorial
page at http://utrecht. kuicr.kyoto-u.ac.jp:8080/sibic/faces/
howto.jsp. We note that SiBIC cannot handle concurrent
multiple jobs from a single user. The user must run only one
job at a time.

2. In an ESearch query, users can specify a term with a “field tag”
such as [orgn] for “organism” or [n_samples] for “the number
of samples.” Note that if no field tag is specified for a term, the
term is directed to all fields. Below are some query examples.

– saccharomyces+cerevisiae[orgn]+AND+4:7[n_samples]
– log+ratio[vtyp]+OR+log2+ratio[vtyp]+OR+log10+

ratio[vtyp]
– cancer[title]+AND+(homo+sapiens[orng]+OR+mus+

musculus[orgn])

3. SiBIC was a single-server platform in [11]. Currently, the
architecture of SiBIC is the combination of a web server with
a high-end fast server. Thus the server response has been
much improved. SiBIC generates a five times larger number of
random matrices than [11] to compute p-values, by concur-
rent and distributed computing, which makes p-values more
precise. However, MAFIA [13] does not support concurrent
computing, by which the computation time of FIM has not

http://utrecht.kuicr.kyoto-u.ac.jp:8080/sibic/faces/index.jsp
http://utrecht.kuicr.kyoto-u.ac.jp:8080/sibic/faces/howto.jsp

110 Kei-ichiro Takahashi et al.

been improved so drastically. Hence, the running status page
should be checked to see if FIM takes an extraordinary large
computation time.

4. In more detail, if FIM takes more than 1 min, the number of
bicluster candidates generated is already intractable for com-
puting p-values. So the job should be canceled and another
parameter set to generate a smaller dataset should be tried.

5. For a GEO dataset, SiBIC can provide a “unified expression
matrix” (.uem) file at the bottom of the parameter input
interface, which is made by simply taking the average over
replicates and can be uploaded as the input in the top page
of SiBIC.

Acknowledgements

Part of this research has been supported by MEXT KAKENHI
#16H02868 and #17H01783, ACCEL (JPMJAC1503) and
PRESTO of JST, FiDiPro of Tekes and AIPSE programme,
Academy of Finland.

References

1. Jiang D, Tang C, Zhang A (2004) Cluster
analysis for gene expression data: a survey. IEEE
Trans Knowl Data Eng 16(11):1370–1386

2. A Ben-Dor, Shamir R, Yakhini Z (1999) Clus-
tering gene expression patterns. J Comput Biol
6(3–4):281–297

3. Madeira SC, Oliveira AL (2004) Biclustering
algorithms for biological data analysis: a survey.
IEEE Trans Comput Biol Bioinf 1(1):24–45

4. Saber HB, Elloumi M (2015) DNA microarray
data analysis: a new survey on biclustering. Int
J Comput Biol 4(1):21–37

5. Barkow S, Bleuler S, Prelic A, Zimmermann
P, Zitzler E (2006) BicAT: biclustering analysis
toolbox. Bioinformatics 22:1282–1283

6. Cheng KO, Law NF, Siu WC, Lau TH (2007)
BiVisu: software tool for bicluster detection
and visualization. Bioinformatics 23(17):2342–
2344

7. Grothaus GA, Mufti A, Murali TM (2006)
Automatic layout and visualization of biclusters.
Algorithms Mol Biol 1:15

8. Heinrich J, Seifert R, Burch M, Weiskopf D
(2011) Bicluster viewer: a visualization tool for
analyzing gene expression data. In: Advances in
visual computing, pp 641–652. Springer, Berlin

9. Streit M, Gratzl S, Gillhofer M, Mayr A, Mit-
terecker A, Hochreiter S (2014) Furby: fuzzy
force-directed bicluster visualization. BMC
Bioinf 15(Suppl 6):4

10. Santamaria R, Theron R, Quintales L (2008)
BicOverlapper: a tool for bicluster visualization.
Bioinformatics 24(9):1212–1213

11. Takahashi K, Takigawa I, Mamitsuka H (2013)
SiBIC: a web server for generating gene
set networks based on biclusters obtained by
maximal frequent itemset mining. PLoS One
8(12):e82890

12. Han J, Cheng H, Xin D, Yan X (2007) Fre-
quent pattern mining: current status and future
directions. Data Min Knowl Disc 15:55–86

13. Burdick D, Calimlim M, Flannick J, Gehrke
J, Yiu T (2005) MAFIA: a maximal frequent
itemset algorithm. IEEE Trans Knowl Data
Eng 17:1490–1504

14. Edgar R, Domrachev M, Lash AE (2002) Gene
expression omnibus: NCBI gene expression
and hybridization array data repository. Nucleic
Acids Res 30:207–210

15. Sayers E, Wheeler D (2004) Building cus-
tomized data pipelines using the entrez pro-
gramming utilities (eUtils). NCBI

SiBIC for Generating a Network of Biclusters 111

16. Huang DW, Sherman BT, Lempicki RA (2009)
Systematic and integrative analysis of large gene
lists using DAVID bioinformatics resources.
Nat Protoc 4:44–57

17. Madadhain J, Fisher D, Smyth P, White S, Boey
Y (2005) Analysis and visualization of network
data using JUNG. J Stat Soft 10:1–35

18. Kamada T, Kawai S (1989) An algorithm for
drawing general undirected graphs. Inf Process
Lett 31:7–15

19. Fruchterman TMJ, Reingold EM (1991)
Graph drawing by force-directed placement.
Softw-Pract Exp 21:1129–1164

20. Meyer B (1998) Self-organizing graphs-a neu-
ral network perspective of graph layout. In:
Graph drawing symposium, August 1998

Chapter 9

Computing and Visualizing Gene Function Similarity
and Coherence with NaviGO

Ziyun Ding, Qing Wei, and Daisuke Kihara

Abstract

Gene ontology (GO) is a controlled vocabulary of gene functions across all species, which is widely used
for functional analyses of individual genes and large-scale proteomic studies. NaviGO is a webserver for
visualizing and quantifying the relationship and similarity of GO annotations. Here, we walk through
functionality of the NaviGO webserver (http://kiharalab.org/web/navigo/) using an example input and
explain what can be learned from analysis results. NaviGO has four main functions, accessed from each
page of the webserver: “GO Parents,” “GO Set”, “GO Enrichment”, and “Protein Set.” For a given
list of GO terms, the “GO Parents” tab visualizes the hierarchical relationship of GO terms, and the
“GO Set” tab calculates six functional similarity and association scores and presents results in a network
and a multidimensional scaling plot. For a set of proteins and their associated GO terms, the “GO
Enrichment” tab calculates protein GO functional enrichment, while the “Protein Set” tab calculates
functional association between proteins. The NaviGO source code can be also downloaded and used locally
or integrated into other software pipelines.

Key words NaviGO, Gene ontology, Functional similarity, Visualization, Quantification, Function
enrichment analysis, GO association score, Protein functional association score, Proteomic analysis

1 Introduction

The gene ontology (GO) is a widely used vocabulary for repre-
senting gene functions across all species [1, 2]. It is maintained
and updated by the Gene Ontology Consortium. Currently, GO
terms are classified into three categories: biological process (BP),
which describes pathway information of gene products such as
cellular physiological process or signal transduction; molecular
function (MF), which describes molecular level activities such as
enzymatic activity; and cellular component (CC), which describes
cellular localization of gene products. Currently, there are over
46,000 GO terms, which are organized in a hierarchical structure,
a directed acyclic graph (DAG). GO is very useful, particularly

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_9, © Springer Science+Business Media, LLC, part of Springer Nature 2018

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_9&domain=pdf
http://kiharalab.org/web/navigo
https://doi.org/10.1007/978-1-4939-8561-6_9

114 Ziyun Ding et al.

for computational analysis of gene functions; however, the volume
of the vocabulary and the complicated relationships often makes
analysis cumbersome.

NaviGO was developed to facilitate easy handling of GO terms,
particularly for quantifying and visualizing relationships between
GO terms [3]. NaviGO has four main functions: “GO Parents”,
“GO Set”, “GO Enrichment”, and “Protein Set.” “GO Parents”
maps and visualizes the hierarchical relationship of GO terms in an
interactive fashion, and “GO Set” calculates six functional similarity
and association scores and provides two visualization tools, a
network and a multidimensional scaling visualization. For a list
of proteins and associated GO terms, “GO Enrichment” performs
GO enrichment analysis, while “Protein Set” identifies functionally
related proteins. Compared with other related online tools [4, 5],
NaviGO server has several advantages: first, it provides multiple
similarity scores, which not only compare GO terms in the same
GO category but also across GO categories. NaviGO provides
biologists an intuitive and interactive tool to visualize parental
relationships between GO terms. NaviGO is also integrated into
the popular gene function prediction webservers PFP [6, 7] and
ESG [8, 9].

2 Materials

NaviGO can be freely accessed at http://kiharalab.org/web/
navigo/. It is a web application and does not require any platform
other than a web browser. The source codes of NaviGO and GO
Visualizer, a tool for visualizing the hierarchy of GO terms, can
be downloaded from GitHub at https://github.com/kiharalab/
NaviGO and https://github.com/kiharalab/GOVisualizer under
the terms of the GNU Lesser General Public License Ver. 2.1.

In order to use NaviGO, users need to provide a set of GO
terms or a set of UniProt IDs of proteins and associated GO
terms to be analyzed. These can be retrieved from the Gene
Ontology Consortium website (http://www.geneontology.org/)
[1] or from the UniProt database (http://www.uniprot.org/)
[10], respectively.

3 Methods

3.1 Overview
of NaviGO

The NaviGO server has four main functions (Fig. 1). Either a set
of GO terms or a set of proteins (with their GO terms) can be
analyzed. For a set of GO terms, the “GO Parents” tab visualizes
input GO terms in the GO DAG, and the “GO Set” tab calculates
the functional similarity and association scores and visualizes them.
On the other hand, for a list of proteins with their GO terms, the

http://kiharalab.org/web/navigo
https://github.com/kiharalab/NaviGO
https://github.com/kiharalab/NaviGO
https://github.com/kiharalab/GOVisualizer
http://www.geneontology.org
http://www.uniprot.org

NaviGO Server for Gene Functional Analysis 115

Fig. 1 Overview of NaviGO functionality. Input to be analyzed can be either a set of GO terms or a set of
proteins

“GO Enrichment” tab performs GO enrichment analysis, and the
“Protein Set” tab calculates functional similarity and association
scores between proteins (Fig. 1).

Throughout this tutorial, we use the following six proteins,
which are involved in the light signaling pathway, as examples:
phytochrome A (PHYA, UniProt ID: P14712), phytochrome B
(PHYB, UniProt ID: P14713), phytochrome D (PHYD, UniProt
ID: P42497), phytochrome-interacting factor 3 (PIF3, UniProt
ID: O80536), pseudo-response regulator 7 (PRR7, UniProt ID:
A0A1P8BCB0), and histone deacetylase 15 (HDA15, UniProt
ID: Q8GXJ1) (Table 1). PHYA, PHYB, and PHYD are from
the phytochrome family and mainly function as red and far-
red photoreceptors. They have been experimentally verified to
interact with each other [11]. Interaction of the transcription
factor PIF3 with the phytochrome family causes phosphorylation
and degradation of phytochrome [12, 13]. Interaction of PIF3
with HDA15, a transcriptional repressor, represses the chlorophyll
biosynthesis and the photosynthesis [14]. PRR7 is one of the key
components of molecular clock in Arabidopsis and involved in the
phytochrome-mediated red light signal transduction pathway [15].
PRR7 interacts with phytochrome and PIF to regulate the red light
signal transduction. Known physical interactions of the six proteins
are summarized in Fig. 2.

116 Ziyun Ding et al.

Ta
bl

e
1

Li
st

of
th

e
si

x
ex

am
pl

e
pr

ot
ei

ns
an

d
th

ei
ra

ss
oc

ia
te

d
GO

te
rm

s

Pr
ot

ei
n

na
m

e
Un

iP
ro

tI
D

CC
M

F
BP

PH
YA

P1
47

12
G

O
:0

00
57

37
,G

O
:0

01
66

04
,

G
O

:0
01

66
07

,G
O

:0
00

56
34

G
O

:0
03

15
16

,G
O

:0
04

28
02

,
G

O
:0

00
37

29
,G

O
:0

00
01

55
,

G
O

:0
04

28
03

,G
O

:0
00

46
72

,
G

O
:0

00
98

83

G
O

:0
00

95
84

,G
O

:0
00

96
30

,G
O

:0
01

71
48

,
G

O
:0

00
96

40
,G

O
:0

00
96

38
,G

O
:0

01
82

98
,

G
O

:0
01

70
06

,G
O

:0
01

01
61

,G
O

:0
00

63
55

,
G

O
:0

04
66

85
,G

O
:0

01
02

01
,G

O
:0

01
02

18
,

G
O

:0
01

02
03

,G
O

:0
00

63
51

PH
YB

P1
47

13
G

O
:0

00
58

29
,G

O
:0

01
66

04
,

G
O

:0
01

66
07

,G
O

:0
00

56
34

G
O

:0
03

15
16

,G
O

:0
04

28
02

,
G

O
:0

00
01

55
,G

O
:1

99
08

41
,

G
O

:0
04

28
03

,G
O

:0
03

15
17

,
G

O
:0

00
98

83
,G

O
:0

04
35

65

G
O

:0
00

96
87

,G
O

:0
00

63
25

,G
O

:0
01

06
17

,
G

O
:0

00
95

84
,G

O
:0

00
96

49
,G

O
:0

00
96

30
,

G
O

:0
00

98
67

,G
O

:0
04

58
92

,G
O

:0
00

96
40

,
G

O
:0

01
59

79
,G

O
:0

00
96

38
,G

O
:0

01
82

98
,

G
O

:0
01

70
12

,G
O

:0
01

01
61

,G
O

:0
03

13
47

,
G

O
:2

00
00

28
,G

O
:0

01
00

29
,G

O
:0

00
94

09
,

G
O

:0
01

02
18

,G
O

:0
01

02
44

,G
O

:0
01

02
02

,
G

O
:0

00
92

66
,G

O
:0

01
03

74
,G

O
:0

00
63

51
,

G
O

:0
01

01
48

PR
R

7
A

0A
1P

8B
C

B
0

G
O

:0
00

56
34

N
A

G
O

:0
00

01
60

PI
F3

O
80

53
6

G
O

:0
00

56
34

G
O

:0
00

36
77

,G
O

:0
04

28
02

,
G

O
:0

04
69

83
,G

O
:0

00
37

00
G

O
:0

00
97

04
,G

O
:0

00
97

40
,G

O
:0

03
15

39
,

G
O

:0
01

00
17

,G
O

:0
00

95
85

,G
O

:0
00

63
55

,
G

O
:0

00
96

39
,G

O
:0

00
63

51

PH
YD

P4
24

97
G

O
:0

00
56

34
G

O
:0

04
28

02
,G

O
:0

00
01

55
,

G
O

:0
00

98
81

,G
O

:0
04

28
03

G
O

:0
01

82
98

,G
O

:0
01

70
06

,G
O

:0
00

95
85

,
G

O
:0

00
63

55
,G

O
:0

00
63

51

H
D

A
15

Q
8G

X
J1

G
O

:0
00

56
34

G
O

:0
04

68
72

,G
O

:0
03

20
41

G
O

:0
00

63
55

,G
O

:0
00

63
51

NaviGO Server for Gene Functional Analysis 117

Fig. 2 The interaction relationship of the six example proteins. These six proteins
are involved in the light signaling pathway

3.2 Quantification
and Visualization
of GO Term
Association
and Similarity

The “GO Set” tab computes six GO term similarity and association
scores for all the pairs of input GO terms. The scores are Resnik’s,
Lin’s, relevance similarity score (RSS), the Interaction Association
Score (IAS), the PubMed Association Score (PAS), and the Co-
occurrence Association Score (CAS). The first three scores quantify
similarity of a GO term pair of the same category. They are
calculated based on the frequencies of two GO terms in the
gene annotation database and their location in the GO DAG
[16–18]. Among the three scores, RSS not only considers the
relative depth of the common ancestor between the two GO terms
but also considers how rare the query GO terms are to identify
the common ancestor. The last three semantic-based functional
similarity scores were developed by our group. IAS quantifies the
probability that two GO terms appear in physically interacting
protein pairs [19]. PAS and CAS quantify the frequency with which
two GO terms appear in the same PubMed abstract and in a single
gene annotation, respectively [20].

To use the “GO Set” tab, please follow the steps described
below:

1. Enter your input in the box. The input format of the “GO set”
tab is a list of GO terms separated by comma. Users can upload
a formatted file or type in the GO term ID. As a GO term ID is
being typed, NaviGO will automatically recognize the GO term
with the number and show candidates in a pull-down list. Thus,
users can choose one from the list. For example, “GO:0005737”
can be retrieved after typing “5737” and clicking the first GO
term in the pull-down list (Fig. 3).

2. To empty inputs, click the “Reset button” located above the
input box. To delete a single GO term in the input box, click
the “X” sign at the GO term.

3. Clicking the “Submit” button below the input box will start the
analysis and show a result page when done.

At the top of the results page, query GO term scores are listed
in colors that indicate categories: BP terms are in red, MF in blue,

118 Ziyun Ding et al.

Fig. 3 Example of inputting GO terms

and CC in yellow (Fig. 4, top). The numbers on the right side of
GO terms are the counts of each GO term in the input. Clicking
the BP/MF/CC Visualizer button below the query GO term list
will open a new page that shows the GO terms of the category in
the GO DAG (Fig. 5). The color legends of GO terms are listed
on the right side, and colors of GO term relationships are shown in
the left upper corner of the page. The query GO terms are shown
in a larger font in the DAG. Clicking a GO term in a graph will
expand links to all the children GO terms. In the example shown in
Fig. 5, seven molecular function GO terms are mapped (Fig. 5). We
can see that the GO terms locate in two branches, photoreceptor
activity and protein-binding activity.

Pairwise GO term scores are calculated and listed in the table
below the input GO term list (Fig. 4, bottom). GO pairs in the
table can be sorted by a score by clicking the title of the score
column. If the members of a pair of GO terms do not belong
to the same category or the score of the pair is not available,
“n/a” is shown. The significance level of scores in each column is
indicated in a color scale, from light pink to red as the significance
level increases. Clicking the “+” in the “common parents” column
expands the list of all common parents of the GO pair in the GO
DAG. Clicking a GO term will take users to the AmiGO website,
which provides more detailed information of the term.

In Fig. 4, a part of the result page for the example input in
Table 1 is shown. IAS of the BP term GO:0009584 (related to
detection of visible light) and the MF term GO:00031516 (far-
red light photoreceptor activity) is highlighted in red, because
the score 1480.737 is within the top 1% of scores relative to
the score background distribution. Both GO terms annotate the

NaviGO Server for Gene Functional Analysis 119

Fig. 4 GO Set result page

120 Ziyun Ding et al.

Fig. 5 Hierarchical graph representation using GO Visualizer. Seven molecular function GO terms are
visualized here, GO:0031517, GO:0009881, GO:0009883, GO:0031516, GO:0042802, GO:0042803, and
GO:0046983. Clicking a GO term expands edges to all the children GO terms

phytochrome proteins, which are known to form heterodimers
[11], so it is reasonable that the two GO terms annotating these
interacting proteins have a very high IAS.

The results table can be also downloaded in a comma separated
data file (a CSV format file) by clicking the “CSV file” button.

NaviGO provides two types of visualizations for GO pairwise
score results. One is a network visualization available under the
“Network Visualization” tab (Fig. 6). In the network, functionally
related GO terms are connected by edges. The score cutoff value
to define edges can be controlled by sliding the bar or by typing
the value in a text box. The scores to visualize can be chosen at
the upper left corner of the page. In the example in Fig. 6, the

NaviGO Server for Gene Functional Analysis 121

Fig. 6 The network of functional association score of seven GO terms: GO:0031517, GO:0009881,
GO:0009883, GO:0031516, GO:0042802, GO:0042803, and GO:0046983. (a) Network using RSS with a cutoff
value of 0.3. (b) Network using IAS with a cutoff value of 100

same set of GO terms as Fig. 5 was used. In the network with
RSS (Fig. 6, left), the GO terms were clustered into two groups,
which is consistent with the two branches in the GO hierarchy
shown in Fig. 5. Using IAS, all GO terms are connected (Fig. 6b).
This is also reasonable because these terms are associated with light
signaling proteins, and they are known to interact with each other
as shown in Fig. 2.

The second visualization is available at the “Multidimensional
Scaling Visualization” tab. In this two-dimensional (2D) graph,
GO terms are classified and mapped onto a 2D space with two
scores selected by users. Placing the cursor over a GO term will
show the normalized functional score of the GO term. In the
example in Fig. 7, the x-axis is RSS and the y-axis is PAS. The GO
terms are largely classified in two groups, which are again consistent
with the results in Figs. 5 and 6.

3.3 GO
Enrichment
Analysis

The goal of GO enrichment analysis is to find if any GO term
appears more frequently in a set of proteins than would be expected
from the background frequency of the term in the genome. The
significance of protein is quantified by a p-value. A p-value of a
GO term for a protein set is calculated by considering the number
of proteins in the set, the number of proteins annotated with the
GO term in the genome, and the total number of proteins in the
organism. The smaller the p-value is, the more significant the GO
term is.

The input format of the “GO Enrichment” tab is a list of
UniProt IDs associated with GO terms, e.g., “A0A1P8BCB0
GO:0005634, GO:0000160”. NaviGO automatically identifies
the organism based on the UniProt ID of the first protein in the
input.

122 Ziyun Ding et al.

Fig. 7 The multidimensional scaling visualization of seven GO terms: GO:0031517, GO:0009881,
GO:0009883, GO:0031516, GO:0042802, GO:0042803, and GO:0046983

In the results page, GO terms of input proteins are sorted
by their p-value (Fig. 8). The significant p-value (below 0.00005
or top 30) GO terms are highlighted in red. The total number
of significantly enriched GO terms is counted in the box on the
left from “Open GO Visualizer”. The third column shows the
number of input proteins that have the GO term. In the example
shown in Fig. 8, the most enriched GO term among the proteins
from Arabidopsis is GO:0000155 phosphorelay sensor kinase activity
with a p-value of 3.57E-10 and GO:0018298 protein-chromophore
linkage with a p-value of 8.11E-9.

Enriched GO terms with p-value above 0.00005 (or the top
30 GO terms) can be mapped to the GO hierarchy by clicking
“open GO Visualizer”. The enriched GO terms are shown in
a larger font and colored based on p-value from red to yellow
indicating most to least significance. The figure can be downloaded
by clicking “Download Figure Here”. In the example in Fig. 9,
the significantly enriched GO terms are involved in the signal
receptor activity such as GO: 0000155, “phosphorelay sensor
kinase activity” with p-value of 3.57e-10, and GO:0009883, “red
or far-red light photoreceptor” with p-value of 8.43e-8. Also,
GO terms identified as enriched are involve in red or far-red
light signaling pathway such as GO:0010161, “red light signaling
pathway” with p-value of 8.43e-8, and detection of light stimulus
such as GO:0009854, “detection of visible light” with p-value of
4.10e-8.

NaviGO Server for Gene Functional Analysis 123

Fig. 8 The GO enrichment analysis result of six proteins: PHYA (P14712), PHYB (P14713), PRR7
(A0A1P8BCB0), PIF3 (O80536), PHYD (P42497), and HDA15 (Q8GXJ1)

3.4 Quantifying
Functional
Association
of Proteins

This function identifies protein pairs in a query protein set that
have functional relevance. Using a GO pair score, functional
relevance of a protein pair is evaluated by the funSim score [21],
which is in essence the average GO pair scores of GO annotations
of the two proteins (see Note 1). Eight different GO pair scores are
used in NaviGO (Fig. 10): “MF”, “BP”, and “CC” use RSS of the
particular GO category, “BP + MF” is the funSim score using BP
and MP, while “All” is the funSim using MF, BP, and CC. “PAS”,
“CAS”, and “IAS” use the corresponding functional association
scores to compute funSim.

For example, when studying whether proteins exist in the
same cellular component, it would be interesting to check the CC
funSim score. When studying whether proteins are involved in the
same pathway or biological process, users would want to check
“BP”, “MF”, or “BP + MF” columns.

124 Ziyun Ding et al.

Fig. 9 Visualization of 12 significantly enriched GO terms

Fig. 10 Example of protein set analysis. (a) Results of pairwise protein association scores. (b) The protein
association network of six proteins PHYA (P14712), PHYB (P14713), PRR7 (A0A1P8BCB0), PIF3 (O80536),
PHYD (P42497), and HDA15 (Q8GXJ1) with a cutoff value of 100

The input data is a list of proteins and their GO annotations,
the same as described in the GO enrichment analysis. In the results
table (Fig. 10), the significance levels of scores are shown in color
scale (red to pink for high to low). Since the significant cutoff is
defined by the score distribution of a particular organism, there is a

NaviGO Server for Gene Functional Analysis 125

pull-down menu above the table to select the reference organism.
In this example of six proteins, they all have the same RSS score of
CC (Fig. 10a), reflecting that all proteins are located in the nucleus.
PHYA (P14712) and PHYB (P14713) have a significantly high IAS
of 1992.12, because they physically interact with each other [22].

Sometimes, it is difficult to see the functional association
between proteins by looking at the score numbers in the output
table. NaviGO provides a network visualization, which is available
at “Open in new Window” (Fig. 10b). In the network, proteins
are connected if their association scores are above a cutoff value.
In the example, only HDA15 is not connected in the association
network with IAS cutoff value set to 100. This is consistent with
the STRING database [23], where only HDA15 has low binding
scores with all the other proteins in this network.

3.5 Downloading
Source Codes

The entire source code of NaviGO is available for academic use
on GitHub (https://github.com/kiharalab/NaviGO). The code
for GO Visualizer is also separately available on GitHub (https://
github.com/kiharalab/GOVisualizer). GO Visualizer is the tool
integrated in NaviGO that performs real-time rendering of GO
DAGs in an interactive way. The code is licensed under the terms
of the GNU Lesser General Public License Ver. 2.1. Users can
download the package for local use of the software or to integrate it
into other software pipelines, for example, a pipeline for proteomic
mass spectrometry data with protein function analysis.

To set up the GO Visualizer locally, follow the steps below:

1. Install the software dependencies. The GO Visualizer requires
Ruby, Gem, Sinatra, and MySQL. Ruby and Gem are two
programming languages which have been installed in most
of computers. Sinatra is a free and open-source software
web application library. MySQL is one of the most popular
open-source relational database management system. The gen-
eral MySQL installer is available at https://dev.mysql.com/
downloads.

2. Download the GO database from the GO Consortium. The
size of the GO database is around 12 MB. In a Linux terminal,
the GO database can be downloaded by running the following:

$ wget http://archive.geneontology.org/latest-full/
go_monthly-termdb-data.gz

3. After downloading a GO database file, the Linux command to
uncompress the file is:

$ gunzip go_monthly-termdb-data.gz

4. The GO database can be created with the following Linux
command, where the “database_name” is the name users want
to assign for the database, and “db_login” and “db_password”
are the username and password defined by users, respectively:

https://github.com/kiharalab/NaviGO
https://github.com/kiharalab/GOVisualizer
https://github.com/kiharalab/GOVisualizer
https://dev.mysql.com/downloads
https://dev.mysql.com/downloads

126 Ziyun Ding et al.

$ echo “create database database_name” |
mysql --user=db_login --password=db_password

$ mysql --user=db_login --password=db_password
database_name < go_monthly-termdb-data

5. To run GO Visualizer, use the following terminal commands:
$ git https://github.com/kiharalab/GOVisualizer.git
$ cd GOVisualizer
$ mv config_template.rb config.rb

6. Users need to change the settings in config.rb according to the
local MySQL settings using following terminal command:
$ ruby server.rb

To set up the NaviGO webserver locally, follow the steps
below:

1. In order to implement the NaviGO package on the local
machine, Perl, Python 2.7, Python 3.4, and MySQL are
needed.

2. The pre-calculated pairwise GO IAS, PAS, and CAS scores are
also needed to compute protein functional association scores
and can be downloaded with the following commands:

$ wget http://kiharalab.org/web/navigo/data/PAS.txt
$ wget http://kiharalab.org/web/navigo/data/CAS.txt
$ wget http://kiharalab.org/web/navigo/data/

BIOGRID-3.2.107_GOpair_IASscores.txt

3. To install GO Visualizer, run:
$ git https://github.com/kiharalab/NaviGO.git

4. Users need to change the directory to “NaviGO/AutoUp-
date”:

$ cd NaviGO/AutoUpdate

5. If there is no temporary folder, users need to make one named
“tmp” to save the updated GO database:

$ mkdir tmp

6. Users need to run the “update.pl” script to generate the
database NaviGO uses with the following command. After
running the script, there should be a folder named like
GO_YYYYMM, for example, GO_201701, and all the files
should be inside this folder.

$ perl update.pl

7. Before running NaviGO, users need to set the paths correctly
in “config_template.pl” and then rename the script “con-
fig_template.pl” to “config.pl”:

$ mv config_template.pl config.pl

NaviGO Server for Gene Functional Analysis 127

8. To run the protein set function on NaviGO, users need to
create their own folder under the “job” folder with the fol-
lowing commands, where “your_job_name” is the customized
job name defined by user:

$ cd job
$ mkdir your_job_name
$ cd your_job_name

9. Users need to create the input file. The required format
of input file can be found on our server NaviGO. For a
given list of GO terms, the format should be “GO:xxxxxxx,
GO:xxxxxxx” For a given list of UniProt ID and their
associated GO terms, the format should be “UniProt_ID:
GO:xxxxxxx, GO:xxxxxxx” Currently, NaviGO
supports the required format and also the CAFA format
(https://github.com/idoerg/cafa-format-check). NaviGO
also provides a file checker under the “format_check” folder.
The “cafa_go_format_checker.py” script will convert the
CAFA format to our required format or check the file you
provided. Users can run by the following command, where
“file” is the CAFA-formatted file provided by the user, and
“input_file” is the required format file converted by the script:

$ python ../../format_check/cafa_go_format_checker.py file >
input_file

10. Then, you can run NaviGO by the following command:
$ perl ../../run.pl input_file

11. To run GO set, users can type the following commands, where
“path_to_your_go_file” is the input file provided by users:

$ cd job
$ mkdir your_job_name
$ cd your_job_name
$ cp path_to_your_go_file ./input_file
$ perl execute.pl

12. To run enrichment analysis, users can type the following
commands, where “organism_id” is the organism ID defined
by UniProt database:

$ cd job
$ mkdir your_job_name
$ cd your_job_name
$ python3.4 ../../Enrich/enrich.py -f input_file -o

organism_id

4 Notes

1. Functional relevance of a protein pair is quantified with the
funSim score of a particular GO pair score [18]. The funSim
score of a GO pair score for a protein pair is defined as, in

https://github.com/idoerg/cafa-format-check

128 Ziyun Ding et al.

short, the average of the best combination of GO term pairs
that annotate the two proteins. For a pair of protein, as shown
in Fig. 10, NaviGO provides funSim scores for MF, BP, CC,
BP + MF, all (i.e., BP + MF + CC), PAS, CAS, and IAS.
For the first five scores, RSS of GO term pairs is used. From
mathematical standpoint, the funSim score of a protein pair is
defined as follows [18]:

First, RSS of two GO terms c1 and c2 is computed as

sim (c1, c2) =maxc∈Ancestor(c1,c2)

(
2 log (p(c))

log p(c1)+ log p(c2)
· (1−p(c))

)

(1)

where c represents a set of their common ancestors and p(c) is
defined as the fraction of proteins in the GOA database annotated
with GO term c.

Then, the funSim score of a GO category, GOscoreGOcategory
(X, Y), is computed by averaging the sim scores between GO
annotations of two proteins, X and Y, in the given category as

GOscoreGOcategory (X, Y)

= max

{(
1

Ax

Ax∑

i=1

max
1≤j≤Ay

sim (Pxi, Pyj)

)
,

⎛

⎝ 1

Ay

Ay∑

j=1

max
1≤i≤Ax

sim (Pxi, Pyj)

⎞

⎠

⎫
⎬

⎭ (2)

where Ax and Ay are the number of annotations for proteins X
and Y, respectively, in that category, and Pxi is ith annotation for
protein X, and Pyj is jth annotation for protein Y.

For computing the funSim score for three categories,

f unSim (X, Y)

= 1

3

(
(GOscoreBP (X, Y))2 + (GOscoreMF (X, Y))2

+ (GOscoreCC (X, Y))2) (3)

This is used for “All” in a NaviGO result page and for
“BP + MF” is the average is computed for BP and MF.

NaviGO Server for Gene Functional Analysis 129

Acknowledgments

We thank Charles Christoffer for proofreading the manuscript.
This work was partly supported by the National Institute of
General Medical Sciences of the NIH (R01GM123055) and
the National Science Foundation (DBI1262189, IOS1127027,
DMS1614777).

References

1. Consortium GO (2013) Gene ontology anno-
tations and resources. Nucleic Acids Res
41(D1):D530–D535

2. Ashburner M, Ball C, Blake J, Botstein D,
Butler H, Cherry J, Davis A, Dolinski K,
Dwight S, Eppig J (2000) Gene ontology:
tool for the unification of biology. The gene
ontology consortium. Nat Genet 25(1):25–29.
https://doi.org/10.1038/75556

3. Wei Q, Khan IK, Ding Z, Yerneni S,
Kihara D (2017) NaviGO: interactive
tool for visualization and functional
similarity and coherence analysis with gene
ontology. BMC Bioinformatics 18(1):177.
https://doi.org/10.1186/s12859-017-1600-5

4. Carbon S, Ireland A, Mungall CJ, Shu S, Mar-
shall B, Lewis S (2009) AmiGO: online access
to ontology and annotation data. Bioinformat-
ics 25(2):288–289. https://doi.org/10.1093/
bioinformatics/btn615

5. Binns D, Dimmer E, Huntley R, Barrell D,
O’donovan C, Apweiler R (2009) QuickGO:
a web-based tool for gene ontology searching.
Bioinformatics 25(22):3045–3046

6. Hawkins T, Luban S, Kihara D (2006)
Enhanced automated function prediction using
distantly related sequences and contextual asso-
ciation by PFP. Protein Sci 15(6):1550–1556.
https://doi.org/10.1110/ps.062153506

7. Hawkins T, Chitale M, Luban S, Kihara
D (2009) PFP: automated prediction
of gene ontology functional annotations
with confidence scores using protein
sequence data. Proteins 74(3):566–582.
https://doi.org/10.1002/prot.22172

8. Chitale M, Hawkins T, Park C, Kihara D
(2009) ESG: extended similarity group method
for automated protein function prediction.
Bioinformatics 25(14):1739–1745. https://
doi.org/10.1093/bioinformatics/btp309

9. Khan IK, Qing W, Kihara D (2015) PFP/ESG:
automated protein function prediction servers
enhanced with gene ontology visualization

tool. Bioinformatics 31(2):271–272. https://
doi.org/10.1093/bioinformatics/btu646

10. Pundir S, Martin MJ, O’Donovan C (2017)
UniProt protein knowledgebase. Methods Mol
Biol 1558:41–55. https://doi.org/10.1007/
978-1-4939-6783-4_2

11. Dieterle M, Bauer D, Büche C, Krenz M,
Schäfer E, Kretsch T (2005) A new type of
mutation in phytochrome A causes enhanced
light sensitivity and alters the degradation and
subcellular partitioning of the photoreceptor.
Plant J 41(1):146–161

12. Nito K, Wong CC, Yates JR, Chory J (2013)
Tyrosine phosphorylation regulates the activ-
ity of phytochrome photoreceptors. Cell Rep
3(6):1970–1979

13. Al-Sady B, Ni W, Kircher S, Schäfer E,
Quail PH (2006) Photoactivated phytochrome
induces rapid PIF3 phosphorylation prior to
proteasome-mediated degradation. Mol Cell
23(3):439–446

14. Liu X, Chen C-Y, Wang K-C, Luo M, Tai
R, Yuan L, Zhao M, Yang S, Tian G, Cui
Y (2013) PHYTOCHROME INTERACT-
ING FACTOR3 associates with the histone
deacetylase HDA15 in repression of chlorophyll
biosynthesis and photosynthesis in etiolated
Arabidopsis seedlings. Plant Cell 25(4):1258–
1273

15. Ito S, Nakamichi N, Nakamura Y, Niwa Y,
Kato T, Murakami M, Kita M, Mizoguchi
T, Niinuma K, Yamashino T (2007) Genetic
linkages between circadian clock-associated
components and phytochrome-dependent red
light signal transduction in Arabidopsis
thaliana. Plant Cell Physiol 48(7):971–983

16. Resnik P (1995) Using information content to
evaluate semantic similarity in a taxonomy. arXiv
preprint cmp-lg/9511007

17. Lin D (1998) An information-theoretic defini-
tion of similarity. In: ICML, vol 1998. Citeseer,
pp 296–304

http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1186/s12859-017-1600-5
https://doi.org/10.1093/bioinformatics/btn615
https://doi.org/10.1093/bioinformatics/btn615
http://dx.doi.org/10.1110/ps.062153506
http://dx.doi.org/10.1002/prot.22172
https://doi.org/10.1093/bioinformatics/btp309
https://doi.org/10.1093/bioinformatics/btp309
https://doi.org/10.1093/bioinformatics/btu646
https://doi.org/10.1093/bioinformatics/btu646
https://doi.org/10.1007/978-1-4939-6783-4_2
https://doi.org/10.1007/978-1-4939-6783-4_2

130 Ziyun Ding et al.

18. Schlicker A, Domingues F, Rahnenführer J,
Lengauer T (2006) A new measure for func-
tional similarity of gene products based on
gene ontology. BMC Bioinformatics 7:302.
https://doi.org/10.1186/1471-2105-7-302

19. Yerneni S, Khan I, Wei Q, Kihara D (2015)
IAS: interaction specific GO term associations
for predicting protein-protein interaction net-
works. IEEE/ACM Trans Comput Biol Bioin-
form. https://doi.org/10.1109/TCBB.2015.
2476809

20. Chitale M, Palakodety S, Kihara D (2011)
Quantification of protein group coherence and
pathway assignment using functional associa-
tion. BMC Bioinformatics 12(1):373

21. Hawkins T, Chitale M, Kihara D (2010) Func-
tional enrichment analyses and construction of

functional similarity networks with high confi-
dence function prediction by PFP. Bmc Bioin-
formatics 11(1):265

22. Clack T, Shokry A, Moffet M, Liu P, Faul M,
Sharrock RA (2009) Obligate heterodimeriza-
tion of Arabidopsis phytochromes C and E and
interaction with the PIF3 basic helix-loop-helix
transcription factor. Plant Cell 21(3):786–799

23. Szklarczyk D, Morris JH, Cook H, Kuhn M,
Wyder S, Simonovic M, Santos A, Doncheva
NT, Roth A, Bork P, Jensen LJ, von
Mering C (2017) The STRING database
in 2017: quality-controlled protein-protein
association networks, made broadly accessi-
ble. Nucleic Acids Res 45(D1):D362–D368.
https://doi.org/10.1093/nar/gkw937

http://dx.doi.org/10.1186/1471-2105-7-302
https://doi.org/10.1109/TCBB.2015.2476809
https://doi.org/10.1109/TCBB.2015.2476809
http://dx.doi.org/10.1093/nar/gkw937

Chapter 10

Analyzing Glycan-Binding Profiles Using Weighted Multiple
Alignment of Trees

Kiyoko F. Aoki-Kinoshita

Abstract

This chapter describes the Multiple Carbohydrate Alignment with Weights (MCAW) tool, which is
available as a part of the RINGS (Resource for INformatics of Glycomes at Soka) website. It implements a
combination of KCaM (Aoki, Yamaguchi, Ueda, et al., Nucl Acids Res 32:W267–W272, 2004), a pairwise
glycan alignment algorithm, and ClustalW (Thompson, Higgins, Gibson, Nucleic Acids Res 22:4673–
80, 1994), a weighted multiple protein sequence alignment algorithm. This tool computes the multiple
glycan alignment by first computing a guide tree to determine the order by which to progressively add
glycans to the multiple alignment. The dynamic programming algorithm results in a glycan profile of the
alignment glycans, containing “monosaccharide positions” indicating the ratio of monosaccharides and
their glycosidic bonds that are aligned at the corresponding position. This tool has been used to analyze
databases of glycan array experimental data, incorporating weights to reflect the biological significance of
certain glycans over others. As a result, it has been shown that the alignments obtained are biologically
relevant, matching the results as found in the literature.

Key words Glycans, Glycobiology, Complex carbohydrates, Alignments, Glycan recognition

1 Introduction

Tree alignment is known to be an NP-hard problem [1], and
methods such as combinatorial optimization and iterative methods
are thus used [2]. In this chapter, the web-based tool called
the Multiple Carbohydrate Alignment with Weights tool [3], or
MCAW, is introduced, which is a combination of KCaM [4], a
pairwise glycan alignment algorithm, and ClustalW [5], a weighted
multiple protein sequence alignment algorithm. This tool allows
anyone to use a web browser to perform multiple alignments of
glycans. It is most useful for analyzing glycan array data, which
produces large amounts of glycan-binding data for a particular
analyte, such as a virus or glycan-binding protein. The list produced
from this experiment contains each glycan and their binding affinity
values. Major databases containing such experimental data are now

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_10, © Springer Science+Business Media, LLC, part of Springer Nature 2018

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_10&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_10

132 Kiyoko F. Aoki-Kinoshita

available for analysis. Therefore, in this chapter, a brief background
to glycobiology including these databases is provided, followed by
an introduction of the multiple tree alignment algorithm and the
actual MCAW web tool which implements this algorithm.

2 Materials

2.1 Brief
Background
of Glycobiology

Glycobiology is the study of complex carbohydrates, often called
glycans, which are chains of monosaccharides that often form
branched structures [6]. Thus in computer science terms, glycans
can be represented as tree structures, where the nodes represent
monosaccharides and edges represent glycosidic bonds. Because
glycosidic bonds can be formed between any of several hydroxyl
groups, or carbon atoms, on monosaccharides, a single monosac-
charide may be bonded (via its first or second carbon) with several
other monosaccharides via different carbon atoms, usually those
with carbon numbers 2, 3, 4, or 6. Figure 1 is an illustration of a
disaccharide structure called cellobiose. Two galactose residues are
linked in an alpha 1–4 configuration. In this case, the “parent”
would be considered the glucose on the right, and the “child”
would be the glucose on the left, because glycan structures are
usually drawn from right to left. Note that the child residue usually
bonds to its parent residue through its carbon 1 atom.

2.2 Brief
Background
of Glycan
Representations

In order to use the MCAW tool, we next describe the text format
called KCF, which is one of the formats used to describe glycan
structures. IUPAC format is also accepted, and it is described
below.

KEGG Chemical Function format, or KCF, was first described
for use in the KEGG GLYCAN database [7]. It uses a graph model
to describe glycan structures, where nodes represent monosaccha-
rides and edges represent glycosidic bonds. An example of the

H

H

H H

H

H

OH

OH

OH

OH

OH

O
O

O

HO

HO6CH2

HO6CH2

3 2

23

4

5

5

1

1

4

Fig. 1 An illustration of a disaccharide structure, where two glucoses are
connected via a glycosidic linkage in alpha 1–4 configuration. In this case, the
“parent” would be considered the glucose on the right, and the “child” would be
the glucose on the left

Weighted Multiple Tree Alignment of Glycans 133

α

α

β β
6

3
4 4 ?

Fig. 2 The core structure common to all N-linked glycans

tri-mannose N,N ′-diacetyl chitobiose core structure of N -glycans,
depicted in Fig. 2, is described in KCF format as follows:

ENTRY G00311 Glycan
NODE 5

1 GlcNAc 15 0
2 GlcNAc 5 0
3 Man -5 0
4 Man -15 5
5 Man -15 -5

EDGE 4
1 2:b1 1:4
2 3:b1 2:4
3 4:a1 3:6
4 5:a1 3:3

///

The KCF file format must contain the NODE and EDGE
sections. The ENTRY line is used to denote the name or ID
(G00311 in this example) of the represented structure, if any.
The NODE section starts with a number indicating the number
of residues (monosaccharides and substituents, such as sulfate)
being represented. The same number of rows follows this line,
each containing the residue number, residue name, and x- and y-
coordinates indicating the location at which to draw the residue.
The residue name can be any text, although it is recommended
that a standard (IUPAC) abbreviated name such as “GlcNAc” or
“Neu5Ac” is used for compatibility with other formats. However, if
used solely within MCAW, the only requirement would be that the
same text is used to represent the same monosaccharide. Similarly,
the EDGE section follows with a number indicating the number
of bonds in the structure, which will usually be one less than the
number of residues. The same number of rows follows, with each
row containing the following information: bond number, node
numbers of residues being bound, anomeric configuration, and
hydroxyl groups in the bond, if any. For example, the following
row:

3 4:a1 3:6

represents the third bond, which indicates that node number 4
(Man at position −15, 5) is bound to node number 3 (Man at

134 Kiyoko F. Aoki-Kinoshita

position −5, 0) in an alpha 1–3 configuration. If the detailed bond
information is unknown, then it is omitted, and if no information
is known, the colon is omitted as well.

In order to represent an alignment of glycans, another similar
format called PKCF (ProfileKCF) was also defined. The following
extensions have been made to KCF:

• The ENTRY field contains an enumerated list, delimited by
hyphens, of the names of the glycans being aligned. For
example:

ENTRY G1-G2-G3 GlycanProfile

• The names of monosaccharides corresponding to each glycan
aligned are listed together in each row in the NODE section.
For example, given the glycan profile of three glycans G1, G2,
and G3, as listed above, the following is an example of the
second NODE aligning a mannose with two glucoses, where
the first Man is contained in glycan G1, and the two other
glucoses are from G2 and G3, respectively:

2 1=Man 2=Glc 3=Glc -8 0

Note that gaps are represented as hyphens (−) and ends,
which are nodes that go off the end of the glycan being aligned,
are represented as zeros (0).

• The EDGE section contains rows of EDGE information for
each glycan, resulting in g ∗ e rows, where g is the number of
glycans aligned, and e is the number of EDGEs in the glycan
profile. For example, the following three rows would represent
the first EDGE in the profile continued from above:

1 2-1:b1 1-1:4
1 2-2:b1 1-2:4
1 2-3 1-3

Note that each NODE is referenced by the glycan number,
hyphen, and NODE number. Thus 2–1 is NODE 1 in glycan
2. Note the omission of any bond information in the third row.

The International Union of Pure and Applied Chemistry
(IUPAC) has published a recommendation for representing car-
bohydrates as a standardized representation [8]. In this recom-
mendation, a list of symbols for representing monosaccharides is
proposed, such as Man for mannose, and Glc for glucose. For
chains of monosaccharides, IUPAC provides an extended form,
condensed form, and short form as recommendations. Because
MCAW supports the condensed form, it is briefly described here.

The IUPAC condensed form omits the ring form unless it
is not pyranose, and the anomer is written in parentheses with
the carbon numbers of the glycosidic bond. For example, the
disaccharide in Fig. 1 would be represented as Glc(α1–4)Glc.

Weighted Multiple Tree Alignment of Glycans 135

Square brackets are used to indicate branches. Thus the glycan in
Fig. 2 would be represented as Man(α1–3)[Man(α1–6)]Man(β1–
4)GlcNAc(β1–4)GlcNAc.

The RINGS website [9] provides a convenient drawing tool
whereby users can draw a glycan structure and immediately obtain
its KCF format. RINGS also provides several format conversion
utilities such that glycan data in a particular format can be
converted to KCF format. Conversely, there are tools that can
translate from KCF to other formats, including IUPAC, and image
files. As shown later, the MCAW tool also provides a useful tool
so that IUPAC can be used as input, and its image is shown before
actually being input into MCAW for execution, so that the user can
confirm its accuracy.

2.3 Glycan
Databases

2.3.1 KEGG GLYCAN
Database

The KEGG GLYCAN database is available at http://www.genome.
jp/kegg/glycan/ and is a database of glycan structures,
accumulated from the original CarbBank database [10]. It has
since been refined and updated with structures from the literature.
All the data is freely available from the web and can also be accessed
via an application programming interface (API), which is described
at http://www.kegg.jp/kegg/rest/keggapi.html.

2.3.2 Consortium for
Functional Glycomics
(CFG)

The CFG glycan structure database was originally developed as a
part of the bioinformatics core of the Consortium for Functional
Glycomics. In addition to their own database of glycan-binding
proteins and glycosyltransferases, they had initially accumulated N -
and O-linked glycan data from the CarbBank database [10] as well
as the glycan structure data from Glycominds, Ltd. Since then, they
have added their own synthesized and characterized data from their
glycan array library as well as from their glycan profiling data.

All of the glycan profiling data, glycan array data, and knockout
mouse data generated by the CFG are also available as data
resources over the web. The glycan array data consist of binding
affinity information for various glycans with different glycan-
binding proteins (GBP), viruses, bacteria, etc. Each data set focuses
on a particular GBP or other binder and lists the binding affinity for
each glycan structure on the array. Glycan arrays have developed
over the years, and the latest version contains over 600 glycan
structures [11].

The data provided by the CFG for each glycan-binding experi-
ment is provided as an Excel spreadsheet, with glycans represented
in IUPAC format. The relative fluorescence unit (RFU) reflects the
binding affinity of the glycan to the analyte.

2.3.3 Lectin Frontier
Database: LfDB

In addition to CFG, the National Institute of Advanced Industrial
Science and Technology (AIST) has provided their lectin array
experimental data available as the Lectin frontier Database, avail-
able at http://acgg.asia/db/lfdb/ [12]. AIST has long performed

http://www.genome.jp/kegg/glycan
http://www.kegg.jp/kegg/rest/keggapi.html
http://acgg.asia/db/lfdb

136 Kiyoko F. Aoki-Kinoshita

lectin array experiments using frontal affinity chromatography
(FAC) and has thus accumulated a large amount of glycan affinity
data for a variety of lectins. Currently, it contains 311 lectin
information, for which 240 have been analyzed using FAC.

Although the data is not downloadable, a list of the glycans
and their dissociation values are provided, from which binding
affinity values can be computed. In order to obtain the data for use
in MCAW, the user would have to hand-draw each glycan using
the DrawRINGS tool in RINGS to obtain KCF formatted data or
generate their own list of IUPAC strings for each glycan.

3 Methods

3.1 MCAW
Dynamic
Programming
Algorithm

MCAW performs the following steps to compute a weighted,
multiple tree alignment:

1. Compute a distance matrix of distance scores between all pairs
of glycans in the input.

2. Create a weighted guide tree based on this distance matrix.
3. According to the guide tree, progressively align the glycans,

adding each to the growing multiple alignment profile.

The pairwise alignments are computed according to the KCaM
global alignment algorithm in step 1. In step 3, MCAW imple-
ments a dynamic programming algorithm that attempts to align
two profiles (multiple alignments) of glycans. A single glycan is
the minimum size of a glycan profile. When a profile contains
two or more glycans, monosaccharides are aligned to one another,
forming what is called a position, consisting of the monosaccharides
of each glycan aligned in the given profile.

MCAW locally aligns pairs of positions by maximizing the sum
of the scores of its children positions. A scoring system is also incor-
porated so that scores for matching monosaccharide, anomers, and
the carbon numbers on either end of the glycosidic linkage can be
adjusted. For two glycan profiles A and B, each containing |A| and
|B| glycans, respectively, the dynamic programming algorithm is as
follows:

Q [u, 0] = 0
Q [0, v] = 0

Q [u, v] = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
vi∈sons(v)

{Q [u, vi] + d(v)}
max

ui∈sons(u)
{Q [ui, v] + d(u)}

1
|A||B|

(|A|∑
n=1

|B|∑
m=1

w (u, v) anbm

)

+ max
ψ∈M(u,v)

{
∑

ui∈sons(u)

Q
[
ui, ψ

(
ui

)]}

0

Weighted Multiple Tree Alignment of Glycans 137

In this equation, u is a position in A and v is a position in
B, Q [u, v] computes the alignment score of the subtree profiles
rooted at u and v, sons(z) refer to the children of position z, d(z)
refers to the gap penalty of deleting position z, ai (resp. bj) is
the weight of the ith (resp. jth) glycan in profile a (resp. b), and
M(u, v) is the mapping of sons(u) with sons(v). w(u, v) refers to
the score of matching nodes u and v, consisting of parameters that
weight the matching of monosaccharides, anomers, and carbon
numbers of the glycosidic bond linking the nodes in question to
their parent nodes.

3.2 MCAW Tool The MCAW tool is available in the RINGS resource at http://
www.rings.t.soka.ac.jp [9]. By registering as a user, any uploaded
data is automatically saved in the user data space, which is password
protected. Therefore, all executions of any programs on RINGS
can be recorded and managed by the user. This allows users to
safely manage their data online without having to download the
input and results onto their own computer.

The input to the MCAW tool is a list of glycan structures
in either KCF or IUPAC condensed format. Using the latter,
integral values indicating weights (e.g., glycan-binding affinity) can
be specified (See Note 1). A screenshot of the MCAW tool where
default values have been supplied is illustrated in Fig. 3. Given
these input, the tool then computes the multiple alignment and
draws the aligned profile as an image, as shown in Fig. 4. In this
figure, it is apparent that positions 6 through 8 are aligned 100%
with a GlcNAc at the root of this subtree profile, whereas the
other two terminal branches also contain similar patterns, but with
lower alignment values. Thus, the visual representation of highly
binding glycans to a particular analyte makes it easier to ascertain
its binding determinants. Note that the resulting alignment can be
downloaded in PKCF format from the link on the upper right. See
Note 2 for issues regarding the output.

For convenience to biologists, a glycan conversion tool was
developed such that the glycan array data of the CFG, for example,
can be applied directly to MCAW. The link to this tool is provided
at the top of the input screen of MCAW (Fig. 3). Users can input
the IUPAC condensed-formatted glycans to be used as input,
along with weights to the left separated by a tab, to indicate the
strength of binding. The weakest would be given a value of 1,
and others would be multiples of this value. In most cases, the
user would select only the strongly binding glycan structures for
analysis. Conversely, it may be possible to select the weakly binding
ones to compare those subtrees that must not be in a glycan for
binding to occur.

http://www.rings.t.soka.ac.jp
http://www.rings.t.soka.ac.jp

138 Kiyoko F. Aoki-Kinoshita

Fig. 3 The MCAW tool where default values have been provided

4 Notes

1. It may be convenient to organize the input data in a spreadsheet
software with weights and IUPAC formatted strings in adjacent
columns. Users can then copy-and-paste the data into the glycan
conversion tool of MCAW. Note that when logged in, the
input data is stored on RINGS in KCF format, with each KCF
represented repeatedly in the input data according to its weight.

2. The results of the MCAW tool may be empty. This occurs
when either a structure of just a single monosaccharide or
some error in the input KCF format has been entered. Single
monosaccharides cannot be aligned with MCAW at the time of
this writing, so they should not be included in the input.

Weighted Multiple Tree Alignment of Glycans 139

Fig. 4 A screenshot of the results of the MCAW tool, displaying the multiple alignment as a figure

References

1. Elias I (2006) Settling the intractability of mul-
tiple alignment. J Comput Biol 13:1323–1339.
https://doi.org/10.1089/cmb.2006.13.1323

2. Batzoglou S (2005) The many faces of
sequence alignment. Brief Bioinform 6:6–22.
https://doi.org/10.1093/bib/6.1.6

3. Hosoda M, Akune Y, Aoki-Kinoshita KF
(2017) Development and application of an
algorithm to compute weighted multiple
glycan alignments. Bioinformatics 33:btw827.
https://doi.org/10.1093/bioinformatics/btw
827

4. Aoki KF, Yamaguchi A, Ueda N et al (2004)
{KCaM} ({KEGG Carbohydrate Matcher}): a

software tool for analyzing the structures of
carbohydrate sugar chains. Nucl Acids Res
32:W267–W272

5. Thompson JD, Higgins DG, Gibson TJ
(1994) CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment
through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic
Acids Res 22:4673–4680

6. Varki A, Cummings RD, Esko JD et al (2017)
Essentials of glycobiology, 3rd edn. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor,
NY

7. Hashimoto K, Goto S, Kawano S et al
(2006) KEGG as a glycome informatics

http://dx.doi.org/10.1089/cmb.2006.13.1323
http://dx.doi.org/10.1093/bib/6.1.6
http://dx.doi.org/10.1093/bioinformatics/btw827

140 Kiyoko F. Aoki-Kinoshita

resource. Glycobiology 16:63R–70R.
https://doi.org/10.1093/glycob/cwj010

8. McNaught AD (1996) Nomenclature of
carbohydrates (IUPAC recommendations
1996). Pure Appl Chem 68:1919–2008.
https://doi.org/10.1351/pac199668101919

9. Akune Y, Hosoda M, Kaiya S et al
(2010) The RINGS resource for glycome
informatics analysis and data mining
on the web. OMICS 14:475–486.
https://doi.org/10.1089/omi.2009.0129

10. Doubet S, Albersheim P (1992) CarbBank.
Glycobiology 2:505

11. Raman R, Venkataraman M, Ramakrishnan
S et al (2006) Advancing glycomics: imple-
mentation strategies at the {C}onsortium
for {F}unctional {G}lycomics. Glycobiology
16:82R–90R

12. Hirabayashi J, Tateno H, Shikanai T et al
(2015) The lectin frontier database (LfDB),
and data generation based on frontal affinity
chromatography. Molecules 20:951–973.
https://doi.org/10.3390/molecules20010951

http://dx.doi.org/10.1093/glycob/cwj010
http://dx.doi.org/10.1351/pac199668101919
http://dx.doi.org/10.1089/omi.2009.0129
http://dx.doi.org/10.3390/molecules20010951

Chapter 11

Analysis of Fluxomic Experiments with Principal Metabolic
Flux Mode Analysis

Sahely Bhadra and Juho Rousu

Abstract

In the analysis of metabolism, two distinct and complementary approaches are frequently used: Principal
component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the main modes of
variability in a set of experiments and does not make many prior assumptions about the data, but does not
inherently take into account the flux mode structure of metabolism. Stoichiometric flux analysis methods,
such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other hand, are able to capture
the metabolic flux modes, however, they are primarily designed for the analysis of single samples at a time,
and assume the stoichiometric steady state of the metabolic network.

We will discuss a new methodology for the analysis of metabolism, called Principal Metabolic Flux
Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant
regularized optimization framework. In short, the method incorporates a variance maximization objective
form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any
flux modes of the network. For interpretability, we also discuss a sparse variant of PMFA that favors flux
modes that contain a small number of reactions. PMFA has several benefits: (1) it can be applied to large
metabolic network in efficient way as PMFA does not enumerate elementary modes, (2) the method is
more robust to the steady-state violations than competing approaches, and (3) can compactly capture the
variation in the data by a few factors. This chapter will describe the detailed steps how to do the above task
on experimental data from fluxomic and gene expression measurements.

Key words Principal component analysis, Metabolic flux analysis, Sparsity

1 Introduction

In the context of transcriptomics and fluxomics, Principal Com-
ponent Analysis (PCA) has been widely applied [1, 2], where a
principal component (PC) identifies linear combinations of genes
or enzymatic reactions whose activity changes explain a maximal
fraction of variance within the set of samples under analysis. The
main goals of PCA in fluxomic data analysis are (1) to identify
which parts of the metabolism retain the main variability in flux
data and (2) to relate them to the samples, i.e, behavior of the
organism for particular experimental condition.

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_11, © Springer Science+Business Media, LLC, part of Springer Nature 2018

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_11&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_11

142 Sahely Bhadra and Juho Rousu

Fig. 1 While doing differential analysis of data given by (a), PCA considers reaction independently and extracts
the reaction which are important to describe sample variance (as shown in (b)). PMFA can be used for
differential analysis of fluxomic data to extract interpretable pathways which are responsible for maximum
sample variance (as shown in (c))

However, in the context of analyzing metabolic networks,
PCA has a few limitations [3] as depicted in Fig. 1b: PCA
considers reactions independently without considering any other
structure or relationship among reactions, including stoichiometric
relations implied by metabolic pathways. PCA simply extracts a
set of reactions that are important to describe sample variance.
Moreover, the principal components output by PCA are known
to be generally dense, thus including most of the variables, which
precludes their interpretation of pathways of any kind.

This chapter discusses a method called Principal Metabolic
Flux Mode Analysis (PMFA) [4], which aims to rectify the defi-
ciencies of the PCA approach. PMFA finds metabolic flux modes
that explain the variance in experiments consisting of fluxomic or
gene expression data collected from heterogeneous environmental
conditions, without requiring a fixed set of predefined pathways to
be given. The method can be seen as a cross between Principal
Component Analysis (PCA) and stoichiometrix flux analysis: It
combines the variance maximization objective of PCA coupled
with a stoichiometric regularizer, which penalizes projections that
are far from any flux modes of the network.

The benefit of the approach for modelling and biological
interpretation is that the sample variance captured by PMFA can be
expressed in terms of metabolic pathways or flux modes (Fig. 1c).
Let us first briefly review the PCA and Flux Balance Analysis

Principal Metabolic Flux Mode Analysis 143

methods, which are frequently used to analyze data arising from
metabolic systems, before describing PMFA.

1.1 Principal
Component
Analysis

Principal component analysis (PCA) is one of the most frequently
applied statistical methods in systems biology [1, 2, 5]. PCA is used
to reduce the dimensionality of the data while retaining most of the
variation in the data-set [6]. This reduction is done by identifying
directions, i.e. linear combination of variables, called principal com-
ponents, along which the variation in the data is maximal. By using
a few such components, each sample can be represented by rela-
tively few variables compared to thousands of features. It also helps
us to distinguish between biologically relevant variables and noise.

We assume X ∈ R
N×Nr be the data matrix of Nr reactions

in N samples, with each entry corresponding to the flux, i.e. the
rate of the reaction, through a particular reaction in a particular
experiment. We assume throughout the paper that all variables
have been centered to have zero empirical mean. The empirical
covariance matrix is then given by � = 1

N
XT X. Denoting �1 = �,

the 1st principal component (PC) w1 can be found by solving

w1 = arg max
w∈RNr

wT �1w, s.t. ‖w‖2 = 1 (1)

Above, ‖w‖2 = √
wT w is the l2 norm of the vector w. The second

PC can be found by applying Eq. (1) on updated covariance matrix
using deflation as �2 = (1 − w1wT

1)�1(1 − w1wT
1) [7].

The weights, also called the loadings, of the principal compo-
nent w ∈ R

Nr can be interpreted as the importance of reactions
in explaining the variance in fluxomic data. The principal com-
ponents are generally dense, containing most of the reactions of
the metabolic network. Sparse PCA [8] aims to increase the
interpretability of PCA by finding principal components that have
a small number of non-zero weights through solving the following
optimization problem

max
w

wT �w − γ ‖w‖1, s.t. ‖w‖2 = 1 (2)

where γ is a user defined hyper-parameter which controls the
degree of sparsity on PC. However, the principal components
extracted by neither method represent metabolic flux modes, and
will not in general adhere to the thermodynamic constraints on
reaction directions.

1.2 Flux Balance
Analysis (FBA)

Flux balance analysis (FBA) [9] is a mathematical method for sim-
ulating metabolism in genome-scale reconstructions of metabolic
networks. FBA is designed be used to find a flux distribution, in a
stoichiometrix steady state, that maximizes a given objective (e.g.,
growth).

The metabolic balance of the metabolic system is described
using the exchange stoichiometric matrix S ∈ R

Nm×Nr [10] which
contains transport reactions for inflow of nutrients and output flow

144 Sahely Bhadra and Juho Rousu

of products, but does not contain any external metabolites (as they
cannot be balanced). Rows of this matrix represent the Nm internal
metabolites, columns present the Nr metabolic reactions including
transport reactions, and each element Sm,r shows participation of
the mth metabolite in the rth reaction: Sm,r = 1 (or −1) indicates
that reaction r produces (or consumes) the metabolite m. The
value Sm,r = 0 indicates metabolite m is not involved in the
reaction r. For a flux vector w, Sw gives the change of metabolic
concentration for all metabolites. The metabolic steady-state is
assured by imposing a constraint Sw = 0.

FBA solves the following optimization problem

max
w

cT w s.t. Sw = 0 and l ≤ w ≤ u, (3)

that calls for a finding a combination of reaction rates (w) that
adhere to stoichiometric steady state as well as upper (u) and lower
bounds (l), and maximize the objective given by the combination
of coefficients c and the reaction rates w. Typically, the objective
is taken as maximization of biomass production, and in this case
c is equal to a row in the stoichiometric matrix corresponding to
biomass production.

Simulations performed using FBA are computationally inex-
pensive and can calculate steady-state metabolic fluxes for large
models (over 2000 reactions) in a few seconds on modern personal
computers. However, as the experimental data is not directly
represented in the optimization problem (3), FBA cannot be
efficiently used to understand the variability between samples.

1.3 Principal
Metabolic Flux
Mode Analysis
(PMFA)

Here we describe the Principal Metabolic Flux Mode Analysis
(PMFA) approach, that combines the PCA and stoichiometric
modelling views of metabolism. It finds metabolic flux modes that
explain the variance in gene expression or fluxomic data collected
from heterogeneous environmental conditions without requiring a
fixed set of predefined pathways to be given. Here each principal
component, called principal metabolic flux mode (PMF), is found
by selecting a set of reactions which represents a metabolic flux
mode which is approximately in steady state and explains most
of the data variability. In addition, we present a sparse variant,
called Sparse Principal Metabolic Flux Mode analysis (SPMFA), to
further help the interpretation of the principal components.

To obtain meaningful solutions of steady state flux distributions
as PC loading one can impose two additional constraints in PCA
formulation:

1. the weights associated with irreversible reactions should
always be positive, i.e., wir ≥ 0, where ir is an index of an
irreversible reaction.

(continued)

Principal Metabolic Flux Mode Analysis 145

2. System is in a steady state, where the internal metabolite
concentrations do not change, i.e. the metabolite producing
and consuming fluxes cancel each other out: Sw = 0.

Considering (1) and (2) the modified optimization problem
for doing PCA with structural constraint is as follows:

max
w

wT �w

s.t. Sw = 0 (stoichiometric steady state)

wir ≥ 0 (irreversible reactions can have only positive flux)

‖w‖2 = 1 (4)

The constraint ‖w‖2 = 1 restricts the spurious scaling up of the
weights in the solution. Here, Sw = 0 is a hard constraint and in
practice imposes too much restriction, due to noise in the data, or
when the data does not actually arise from steady-state conditions,
e.g. given transients or perturbations of the fluxes during the
experiment. Numerically, the steady state constraint amounts to
a set of linear equations of size NM ×NR which makes the problem
(Eq. (4)) also computationally hard to solve. Hence instead of
considering this hard constraint on the PC loadings we introduce
a soft constraint which penalizes the deviation from the steady
state. Our aim is to find a flux which optimizes a combination
of (1) maximal explained sample variance wT �w and (2) minimal
deviation from a steady-state condition, expressed in the l2 norm:
‖Sw−0‖2

2 = ‖Sw‖2
2. This entails solving the following optimization

problem:

max
w

wT �w − λ‖Sw‖2
2

s.t. wir ≥ 0

‖w‖2 = 1 (5)

Here λ imposes the degree of hardness of the steady-state con-
straint. For λ = 0 Eq. (5) produces loadings similar to PCA
with the exception of the reaction directionality constraint. The
model will be henceforth denoted as PMFA(l2). If desirable, we
can make our model to disregard reaction directionality simply
by dropping the inequality constraints wir > 0. By dropping the
directionality constraint PMFA gives fluxes corresponding to a
metabolic network where all reactions are reversible.

The l2 norm on Sw in Eq. (5) has the tendency to penalize
large steady state deviations in individual metabolites, at the cost
of favoring small deviations in many metabolites. This is probably
the desired behavior in case the data comes from conditions where

146 Sahely Bhadra and Juho Rousu

there is no subsystems that is considerably farther from steady state
than other parts of the system. In order to capture the opposite
scenario, where a small subset of metabolites have large deviation
from steady state, one can use l1 norm regularizer on Sw. The l1
norm regularizer ‖Sw‖1 in Eq. (5) puts the emphasis of pushing
most of the steady-state deviations to zero, whilst allowing a few
outliers, metabolites that markedly deviate from steady state. Using
l1 regularizer and a trade-off parameter λ we get to solve the
following optimization problem:

max
w

wT �w − λ‖Sw‖1

s.t. wir ≥ 0

‖w‖2 = 1 (6)

Here λ imposes the degree of hardness of the steady-state con-
straint. Similarly to Eq. (5) for λ = 0 Eq. (6) also produces loadings
similar to PCA with selective non-negative constraint. The model
will be henceforth denoted as PMFA(l1). Note that the solution of
PMFA(l2) is more stable than the solution of PMFA(l1).

1.3.1 Sparse
Principal Metabolic Flux
Mode Analysis

The above formulation of PCA with stoichiometric constraint still
suffers from the fact that each principal component is a linear
combination of all possible reaction activities, thus it is often
difficult to interpret the results. This problem can be avoided by a
variant of PMFA, the sparse principal metabolic flux mode analysis
(SPMFA) using an l1 regularizer [11] on w to produce modified
principal components with sparse loadings.

max
w

wT �w − λ‖Sw‖∗

s.t. wir ≥ 0

‖w‖1 = C (7)

where ‖ ·‖∗ can be any of the l2 and l1 norm and C is a user defined
hyper-parameter which controls the degree of sparsity in principal
metabolic flux (PMF) loadings. Similarly to PMFA, sparse PMFA
can also be made consider all reaction reversible by dropping the
directionality constraints wir ≥ 0.

1.3.2 Analysis of
Metabolic Subsystems

One can apply our method to study differential flux modes only in a
subsystem of metabolic network (e.g., central carbon metabolism,
redox subsystem, lipid metabolism) by restricting the covariance
matrix in objective function to the fluxes in the subsystem, while
keeping the stoichiometric regularizer the same as before. Similarly,
when some flux measurements are missing, one can change the
covariance matrix in the objective function to exclude the fluxes
that are missing.

Principal Metabolic Flux Mode Analysis 147

For example, to study the variation within the redox subsystem,
let Xrdx contain the columns of X corresponding to reactions
containing redox co-factors, and let wrdx represent the correspond-
ing part of w. We will consider �rdx = 1

N
XT

rdxXrdx for finding
variance maximizing directions. Hence need to solve

max
w

wT
rdx�rdxwrdx − λ‖Sw‖∗

s.t. wir ≥ 0 and ‖w‖2 = 1 (8)

Similarly we can also apply SPMFA on metabolic subsystem.

2 Materials

We demonstrate the PMFA methods through two datasets: a
simulation case study on Pichia pastoris metabolic network, and an
experimental study on Saccharomyces cerevisiae metabolic network.
The details of the datasets are given in the following.

2.1 Datasets

2.1.1 Saccharomyces
cerevisiae Experimental
Case Study

We use the metabolic network for Saccharomyces cerevisiae pro-
posed by Hayakawa et al. [12] and 13C isotopic tracer based
fluxome data used in [12–14] to demonstrate the methods.
The network describes the central cytosolic and mitochondrial
metabolism of S. cerevisiae, comprising glycolysis, the pentose
phosphate pathway, anaplerotic carboxylation, fermentative path-
ways, the TCA cycle, malic enzyme and anabolic reactions from
intermediary metabolites into anabolism [14].

The network contains 42 compounds (30 of which are internal
metabolites, which can be balanced for growth) and 47 reactions
of which 39 are intracellular. The objective in this case study is to
evaluate the performance of PMFA equation (5) on fluxome data
and compare it with PEMA and PCA. For PEMA we have used
1182 EMs provided by Stosch et al. [14].

This dataset is available at https://github.com/aalto- ics-kepa-
co/PMFA/tree/master/Data/SaccharomycesFluxomicData.mat.
Table 1 describes its elements.

2.2 Scripts Matlab software for PMFA and SPMFA (Table 1) are available
at https://github.com/aalto-ics-kepaco/PMFA. Both PMFA and
SPMFA can be applied on fluxomic and transcriptomic data
(Table 2).

https://github.com/aalto-ics-kepaco/PMFA/tree/master/Data/SaccharomycesFluxomicData.mat
https://github.com/aalto-ics-kepaco/PMFA

148 Sahely Bhadra and Juho Rousu

Table 1
Description of Saccharomyces cerevisiae fluxomic data

Matrix name Size

Description

StoichiometricMatrix 42×47 double Stoichiometric information
matrix for all reactions

rxnE 47×7 double Fluxomic data

metNames 42×1 cell Name of metabolites

rxnNames 47×1 cell Name of reaction

ExternalmetaboliteID 1×12 double ID of extra cellular metabo-
lites

EMs 47×1182 double Elementary modes

L 47×1 double Lower bound for reaction
flux

(Lr = 0 for irreversible and
Lr = −1 for reversible reac-
tions)

Table 2
List of scripts required for using PMFA

Script name

Description

CentralizedExpression.m To centralized expression/fluxomic data

PCA.m To find principal components (PC) of a
expression/fluxomic data

SPCA.m To find sparse PC of a expression/fluxomic
data

PMFA_L2.m To find PMF by minimizing squared norm of
steady-state deviations of intracellular metabo-
lites

PMFA_L1.m To find PMF by minimizing l1 norm of
steady-state deviations of intracellular metabo-
lites

SPMFA_L2.m To find sparse PMF by minimizing squared
norm of steady-state deviations of intracellular
metabolites

SPMFA_L1.m To find sparse PMF by minimizing l1 norm of
steady-state deviations of intracellular metabo-
lites

Deflation.m To deflate a covariance matrix of the variability
explained by a PMF

Principal Metabolic Flux Mode Analysis 149

3 Finding Principal Flux Modes

3.1 Data
Centralization

PCA, SPCA, PMFA, and SPMFA aim at explaining the main
variability in data using a few PCs.

If the original data have non-zero mean, typically the first
principal component is heavily biased towards the sample mean,
and fails to capture any variability between the sample.

Hence before applying any of the methods, we need to
centralize the expression and fluxomic data.

function Ec= CentralizedExpression (Einput,axis)

• Input:

– Einput: Expression/fluxomic matrix
– axis: Centralization should be done according to this axis

• output:

– Ec: Centralized expression/fluxomic matrix

Example in Matlab for centralizing fluxomic matrix of Saccha-
romyces cerevisiae such that for every reaction the sample mean of
the expression/flux is zero.

>> load(‘../Data/SaccharomycesFluxomicData.mat’);
>> Ec= CentralizedExpression(saccharomyces.rxnE,2);
>> mean(Ec,2) % this will produce a zero vector

3.2 Principal
Component
Analysis

Principal component analysis (PCA) as given by Eq. (1) and Sparse
PCA corresponding to Eq. (2) are implemented in PCA.m and
SPCA.m

function W = PCA(E,num)

• Input:

– E: Expression/fluxomic matrix
– num: The number of PCs to be extracted

• Output:

– W: Each column of this matrix represents PC loadings

Example in Matlab for finding the first 3 PC loadings for Saccha-
romyces cerevisiae fluxomic data:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)
>> W = PCA(saccharomyces.rxnE,3)

150 Sahely Bhadra and Juho Rousu

function W = SPCA(Einput,gamma, num)

• Input:

– Einput: expression/fluxomic matrix
– gamma: User-defined parameter which indicates the

degree of required sparsity in PC loadings. It corresponds
to γ in Eq. (2)

– num: The number of PCs to be extracted

• Output:

– W: Columns of this matrix represent sparse PC loadings

Example in Matlab for finding the first 3 sparse PC loadings for
Saccharomyces cerevisiae fluxomic data:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)
>> W = SPCA(saccharomyces.rxnE,1,3)

3.3 Finding
Principal Metabolic
Fluxes with PMFA

Principal Flux Mode Analysis as described in Subheading 1.3 is
solved by the following scripts. The script PMFA_L2.m solves
PMFA(l2) with l2 regularization on the stoichiometric constraint
equation (5) while PMFA_L1.m solves PMFA(l1) with l1 regular-
ization on stoichiometric constraint equation (6).

Both scripts can be used to also find principal flux modes
with respect to a subsystem of metabolic network as described in
Subheading 1.3.2. Both take reaction expression/fluxomic matrix
corresponding to the defined subsystems along with a list of
indices of these reactions in the stoichiometric matrix of the whole
system. For the steady state constraint both methods use the
exchange stoichiometric matrix that contains all reactions (intra-
cellular and transport reactions) in the whole metabolic network
but only inter-cellular metabolites as this allows consumption and
production of extra-cellular metabolites through the principal flux
modes.

function [W,TotalrunTime] = PMFA_L2(Einput,
S,lambda,L,U,num,ID)

• Input:

– Einput: The expression/flux data for reactions in the
defined subsystem. The size of this matrix is number of
reactions in subsystem × number of samples

– S: Exchange stoichiometric matrix, containing all reactions
in whole metabolic network but only inter-cellular metabo-
lites. The size of this matrix is number of metabolites ×
number of reactions

Principal Metabolic Flux Mode Analysis 151

– lambda: User-defined regularization parameter which indi-
cates the degree of penalization of steady-state violations in
the PMF loadings. It corresponds to λ in Eq. (5)

– L: Vector containing lower bounds for fluxes in the reac-
tions

– U: Vector containing upper bounds for fluxes in the
reactions (Default = vector of all ones)

– num: How many principal flux modes are to be computed
(Default = 1)

– ID: If we consider the analysis of a subsystem, then ID
contains list of index of target reactions in stoichiometrix
matrix (Default = index of all reactions in the metabolic
network)

• Output:

– W: Columns of this matrix represent the PMF loadings
– TotalrunTime: Total CPU time taken by PFMA

Example in Matlab for finding the first 3 PMF loadings for
Saccharomyces cerevisiae fluxomic data when λ = 1:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% to find Stoichiometric matrix with all reactions
% in whole metabolic network but with only
% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.Externalmeta

boliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when λ = 1

>> [W,TotalTime] = PMFA_L2(saccharomyces.rxnE, ...
S,1,saccharomyces.L,saccharomyces.U,3)

% Find the first 3 rev−PMF loadings when lambda = 1
% Here we set the lower bound for all reactions at
% negative one

>> L = −1∗ones(N,1)
>> [W,TotalTime] = PMFA_L2(saccharomyces.rxnE, ...

S,1,L,saccharomyces.U,3)

For this data set optimum value for λ is 5. For λ = 5 PMF
loadings for this data are available at https://github.com/aalto-ics
-kepaco/PMFA/tree/master/SuplementaryResult/PMFsaccha-
roResultandAnalysis.

https://github.com/aalto-ics-kepaco/PMFA/tree/master/SuplementaryResult/PMFsaccharoResultandAnalysis

152 Sahely Bhadra and Juho Rousu

Table 3
Comparing variance captured and changes of intra-cellular metabolites by PMFA(l2) for optimum
λ and by PCA

PMFA(l2)

λ = 5 PCA

PMFA(l2)

λ = 7

Principal components PMF1 PMF2 PMF3 PC1 PC2 PC3 PMF1 PMF2 PMF3

Fraction of sample variance 0.94 0.95 0.96 0.97 0.99 1.00 0.71 0.72 0.72

Metabolites changes (‖Sw‖2
2) 0.27 0.28 0.05 0.28 0.38 1.05 0.09 0.01 0.00

The total percentage of variance captured by up to 1st, 2nd,
and 3rd PMFs are 94.11, 94.99, and 95.76. The
2-norm of
steady-state deviations in intracellular metabolites of the PMF are
0.27, 0.28 and 0.05. Table 3 shows the comparison of optimal PFM
with PCA. With increase of λ value the resultant PMFs captured
lesser variance but, on the other hand, they are very close to steady
state fluxes.

function [W,TotalrunTime]= PMFA_L1(Einput,S, lambda,L,
U,num,ID)

• Input:

– Einput: Expression/fluxomic data for reactions in the
defined subsystem. The size of this matrix is number of
reactions in subsystem × number of samples

– S: Stoichiometric matrix with all reactions in whole
metabolic network but with only intracellular metabolites.
The size of this matrix is number of metabolites × number
of reactions

– lambda: User-defined regularization parameter which indi-
cates the degree of penalization of steady-state violations in
the PMF loadings. It is corresponding to λ in Eq. (6).

– L: Vector containing lower bounds of fluxes in the reac-
tions

– U: Vector containing upper bounds of fluxes in the reac-
tions (Default = vector of all ones)

– num: How many principal flux modes are to be computed
(Default = 1)

– ID: If we consider the analysis of a subsystem, then ID
contains list of index of target reactions in stoichiometrix
matrix (Default = index of all reactions in the metabolic
network).

• Output:

– W: Columns of this matrix represent the PMF loadings
– TotalrunTime: Total cpu time taken by PFMA.

Principal Metabolic Flux Mode Analysis 153

Example in Matlab for finding the first 3 PMF loadings for
Saccharomyces cerevisiae fluxomic data when λ = 1:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% Find Stoichiometric matrix with all reactions
% in whole metabolic network but with only
% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.

ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when λ = 1

>> [W,TotalTime] = PMFA_L1(saccharomyces.rxnE, ...
S,1,saccharomyces.L,saccharomyces.U,3)

% Find the first 3 rev−PMF loadings when lambda = 1
% Here we set the lower bound for all reactions at
% negative one

>> L = −1∗ones(N,1)
>> [W,TotalTime] = PMFA_L1(saccharomyces.rxnE, ...

S,1,L,saccharomyces.U,3)

3.4 Finding
Sparse Principal
Metabolic Fluxes
with SPMFA

Sparse Principal Flux Mode Analysis as described in Sub-
heading 1.3.1 is solved by the following scripts. The script
SPMFA_L2.m solves SPMFA(l2) with l2 regularization on the
stoichiometric constraint while SPMFA_L1.m solves SPMFA(l1)

with l1 regularization on stoichiometric constraint.
Similarly to PMFA, SPMFA can also find differential flux

modes only in a subsystem of metabolic network as described in
Subheading 1.3.2.

function [W,TotalrunTime]= SPMFA_L2(Einput,S, lambda,C,
L,U,num,ID)

• Input:

– Einput: The expression/fluxomic data for reactions in the
defined subsystem. The size of this matrix is number of
reactions in subsystem × number of samples.

– S: Stoichiometric matrix with all reactions in whole
metabolic network but with only intracellular metabolites.
The size of this matrix is number of metabolites × number
of reactions

– lambda: User-defined regularization parameter which indi-
cates the degree of penalization of steady-state violations in
the PMF loadings. It is corresponding to λ in Eq. (7).

154 Sahely Bhadra and Juho Rousu

– C: The parameter controlling the sparsity; PMFs are more
sparse for smaller C.

– L: Vector containing lower bounds of fluxes in the reac-
tions

– U: Vector containing upper bounds of fluxes in the reac-
tions (Default = vector of all ones)

– num: How many principal flux modes are to be computed
(Default = 1)

– ID: If we consider the analysis of a subsystem, then ID
contains list of index of target reactions in stoichiometrix
matrix (Default = index of all reactions in metabolic
network).

• Output:

– W: Columns of this matrix represent the sparse PMF
loadings

– TotalrunTime: Total CPU time taken by PFMA

Example in Matlab for finding the first 3 PMF loadings for
Saccharomyces cerevisiae fluxomic data when λ = 1:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% to find Stoichiometric matrix with all reactions
% in whole metabolic network but with only
% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.

ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when λ = 1 and C = 3

>> [W,TotalTime] = SPMFA_L2(saccharomyces.rxnE, ...
S,1,3,saccharomyces.L,saccharomyces.U,3)

% Find the first 3 rev−SPMF loadings when λ = 1
% Here we set the lower bound for all reactions at
% negative one

>> L = −1∗ones(N,1)
>> [W,TotalTime] = SPMFA_L2(saccharomyces.rxnE, ...

S,1,3,L,saccharomyces.U,3)

Principal Metabolic Flux Mode Analysis 155

function [W,TotalrunTime]= SPMFA_L1(Einput,S, lambda,C,
L,U,num,ID)

• Input:

– Einput: The expression/fluxomic data for reactions in the
defined subsystem. The size of this matrix is number of
reactions in subsystem × number of samples.

– S: Stoichiometric matrix with all reactions in whole
metabolic network but with only intracellular metabolites.
The size of this matrix is number of metabolites × number
of reactions

– lambda: User-defined regularization parameter which indi-
cates the degree of penalization of steady-state violations in
the PMF loadings. It is corresponding to λ in Eq. (7).

– C: The parameter controlling the sparsity; PMFs are more
sparse for smaller C.

– L: Vector containing lower bounds of fluxes in the reac-
tions

– U: Vector containing upper bounds of fluxes in the reac-
tions (Default = vector of all ones)

– num: How many principal flux modes are to be computed
(Default = 1)

– ID: If we consider the analysis of a subsystem, then ID
contains list of index of target reactions in stoichiometrix
matrix (Default = index of all reactions in metabolic
network).

• Output:

– W: Columns of this matrix represent the sparse PMF
loadings

– TotalrunTime: Total cpu time taken by PFMA

Example in Matlab for finding the first 3 sparse PMF loadings
for Saccharomyces cerevisiae fluxomic data when λ = 1 and C = 1:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% Find Stoichiometric matrix with all reactions
% in whole metabolic network but with only
% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.

ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

(continued)

156 Sahely Bhadra and Juho Rousu

% Find the first 3 PMF loadings when λ = 1

>> [W,TotalTime] = SPMFA_L1(saccharomyces.rxnE, ...
S,1,3,saccharomyces.L,saccharomyces.U,3)

% Find the first 3 rev−PMF loadings when lambda = 1
% Here we set the lower bound for all reactions at
% negative one

>> L = −1∗ones(N,1)
>> [W,TotalTime] = SPMFA_L1(saccharomyces.rxnE, ...

S,1,3,L,saccharomyces.U,3)

3.5 Deflating the
Covariance Matrix

To obtain a multi-factor PMFA model, i.e. a model containing
several PMFs jointly representing the data, we follow a approach
similar to some PCA algorithms, namely the deflation of the
covariance matrix. However, due to additional stoichiometric con-
straint here we deal with a sequence of non-orthogonal vectors,
[w1, . . . , wd] hence we must take care to distinguish between
the variance explained by a vector and the additional variance
explained, given all previous vectors. We have used orthogonal
projection for deflating the data matrix [7]. This also maintains
positive definiteness of covariance. For every iteration d +1 we first
transfer already found principal flux modes W ∈ R

NR×d to a set of
orthogonal vectors, {q1, . . . , qd}.

qd = (I − Qd−1Q
T
d−1)wd

‖(I − Qd−1Q
T
d−1)wd‖ (9)

where q1 = w1, and q1, . . . , qd form the columns of Qd . q1, . . . , qd

form an orthonormal basis for the space spanned by w1, . . . , wd .
Then the Schur complement deflation of covariance matrix is
done by

�d+1 = �d − �dqdq
T
d �d

qT
d �dqd

(10)

function [Covdef,Q] = Deflation(Cov,W)

• Input:

– Cov: Covariance of Expression/fluxomic data for reactions
in the defined subsystem. The size of this matrix is number
of reactions in subsystem × number of reactions in subsystem.

– W: Columns of this matrix represent the sparse PMF
loadings

Principal Metabolic Flux Mode Analysis 157

• Output:

– Covdef: Deflated Covariance matrix.
– Wn: Orthogonal transformation of PMFs. It is Q in Eq. (9)

Example in Matlab for finding the first 2 PMF loadings for
Saccharomyces cerevisiae fluxomic data using deflation of expression
matrix:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% Find Stoichiometric matrix with all reactions
% in whole metabolic network but with only
% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.

ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first PMF loadings when λ = 1

>> [W,TotalTime] = PMFA_L2(saccharomyces.rxnE, ...
S,1,saccharomyces.L,saccharomyces.U,1)

% Data centralization

>> E=CentralizedExpression(saccharomyces.rxnE,2);

% covariance

>> CovE=E∗E’;

% Find Covariance matrix deflated by the first PMF

>>[Covdef,Q] = Deflation(Cov,W)

3.6 Computing
the Total Variance
Captured by PMFs

To find the total sample variance explained by first few PMFs, we
first transfer already found principal flux modes W ∈ R

NR×d to a set
of orthogonal vectors, {q1, . . . , qd} using Eq. (10). Then we sum
up the variance captured by {q1, . . . , qd}. The script varianceCap.m
calculate total cumulative variance captured by up to kth PFMs.

function [v] = varianceCap(E,W)

• Input:

– E: The expression/fluxomic data for reactions in the
defined subsystem. The size of this matrix is number of
reactions in subsystem × number of samples.

– W: Columns of this matrix represent the PMF loadings

158 Sahely Bhadra and Juho Rousu

• Output:

– v: A vector where the kth element shows the total fraction
of sample variance captured by all PMF upto the kth PMF
together.

Example in Matlab for finding the variance captured by first 3 PMF
loadings for Pichia pastoris simulation data:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% Find Stoichiometric matrix with all reactions
% in whole metabolic network but with only
% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.

ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when λ = 1

>> [W,TotalTime] = PMFA_L2(saccharomyces.rxnE, ...
S,1,saccharomyces.L,saccharomyces.U,3)

% Find total variance captured by PMFs

>> [v] = varianceCap(saccharomyces.rxnE,W)

4 Further Guidelines

4.1 Directionality
Constraints in
PMFA and SPMFA

The benefit of the directionality constraint is that the results
are interpretable as flux modes with thermodynamically correct
reaction directions. The directionality constraint also has been
observed to increase the stability of PMFA. However, insisting
on interpretability of flux modes with correct directionality may
lose some power of explaining the variance. Hence dropping the
directionality constraints may sometimes give further insight on
the main sources of variation.

4.2 Finding Mean
Flux Modes

PMFA is similar in philosophy with the differential expression
analyses where genes that vary between experiments are of interest.
PMFA is not very well suitable for the analysis of a single sample
at a time. If one uses the method for technical or biological
replicates, the resulting flux modes will mostly capture the pattern
in the noise. Also, the method is not designed to capture the main
active flux modes but to capture fluxes that explain differences
between different samples. However, it is easy to modify the

Principal Metabolic Flux Mode Analysis 159

PMFA objective so that it finds the average flux mode in a set of
experiments, essentially replacing the covariance with the mean.

4.3 Analysis
of Non-linear
Trajectories

PMFs are good for explaining the main linear directions of vari-
ance, interpretable as pathways, in the samples but are not expected
to fully explain complex nonlinear trajectories, e.g. time course
data.

4.4 Finding the
Optimal Models

The objective function is non-convex equation (5), and can be
interpreted as difference of two differentiable convex functions.
This type of optimization problem is known as Difference of
Convex functions (DC) program. We have used the convex-
concave procedure (CPP), a local heuristic that utilizes the tools of
convex optimization to find local optima of difference of convex
functions (DC) programming problems [15]. Using the CCP
method we solved Eq. (5) by solving following convex approxi-
mation (quadratic program) in each iteration t :

wt+1 = arg min
w

λ

2
‖SwT ‖q − wtT �Ew

s.t. wir ≥ 0 (11)

followed by projecting wt+1 on ‖w‖p = C. The norms p, q ∈ {1, 2}
are chosen according to the desired model.

To find a good local optimum, we repeat the above opti-
mization with different random starting points, and take the best
local minimum as the solution. In our experiments we used 100
repetitions (Rep=100).

4.5 Estimating
Optimal Values for
User-Defined
Parameters

The performance of SPCA, PMFA, and SPMFA depends on
the value of used defined parameters, namely the regularization
parameters λ for PMFA and SPMFA, and the level of sparsity C

for SPMFA, and γ for SPCA. One should carefully choose those
parameters to find correct differential fluxes.

With γ = 0, SPCA corresponds to normal PCA. With the
increase of γ we increase the sparseness in PC loadings and hence
increase the interpretability of it but decrease the amount of sample
variance described by the PC. Hence too high value in γ is not
good. Similarly, the parameter C controls the sparsity in SPMFA.
Here with decrease of C the sparsity in loading increases.

The deviation from the steady-state in PMFA and SPMFA is
controlled by the regularization parameter λ ≥ 0: high values of λ

give low deviation from steady-state and vice versa. In particular
on the fluxomic datasets, relatively heavy regularization can be
applied without decrease of variance explained (cf. Fig. 2). By
change of the regularization parameter λ, the statistics of PMFA
exhibit a continuous transition from fully steady state flux modes
(‖Sw‖2

2 = 0) to the PCA augmented with reaction directionality
constraints.

160 Sahely Bhadra and Juho Rousu

0.9

0.85

F
ra

ct
io

n
of

 v
ar

ia
nc

e
ca

pt
ur

ed

F
ra

ct
io

n
of

 v
ar

ia
nc

e
ca

pt
ur

ed

0.8

0.75
0 0.05 0.1

Test data
Train data
Test optimum (selected model)
Training optimum

0.15

lambda

0.94

0.92

0.9

0.88
10-2 100

||Sw||22

0.2 0.25 0.3

1

0.95

0.98

Explained Variance (S. cerevisiae)

0.96

102 104

Fig. 2 Figure shows the variance captured by the first PMF on training and test data for various values of λ

and also corresponding ‖Sw‖2. Optimum λ is chosen to be 5

The optimum levels of the Stoichiometric constraints can be
set by cross-validation maximizing the fraction of sample variance
captured on test samples

Fraction of variance = wT �w
Trace(�)

,

which is a classic measure used with PCA and related approaches.
Above, w is the PC computed from the training data, and � is
the co-variance matrix of the test sample. Leave-One-Out (LOO)
cross-validation can be used on smaller data-sets and less time-
intensive techniques, such as fivefold cross-validation on larger
datasets.

For Saccharomyces cerevisiae fluxomic data we have selected
optimum parameter using LOO cross validation. Figure 2 shows
the variance captured by the first PMF on training and test data for
various values of λ and also corresponding ‖Sw‖2. Optimum λ is
chosen to be 5.

4.6 PMFA on
Expression Data

To analyze gene expression data with PMFA and SPMFA, one
needs to map the gene expression to the corresponding biochemi-
cal reactions. One can transfer the expression matrix from gene to
reaction-wise with help of gene rules defined in metabolic network
[16, 17]. Gene rules are Boolean rules that determine the effect of
the expression of regulatory genes on the activity of reactions in
the metabolic network.

5 Conclusion

In this chapter we have demonstrated the analysis of fluxomic
data with Principal Metabolic Flux Mode Analysis, PMFA [4].
Through the combination of stoichiometric flux analysis and
principal component analysis, the PMFA finds flux modes that

Principal Metabolic Flux Mode Analysis 161

explain most of the variation in fluxes in a set of samples. Unlike
most stoichiometric modeling methods, PMFA is not tied to
the steady-state assumption, but can automatically adapt—by the
change of a single regularization parameter—to deviations from the
stoichiometric steady-state, whether they are due to measurement
errors, biological variation, or other causes. PMFA can also be
applied time course and gene expression data. On the other hand,
SPMFA that allows us to discover flux modes with a small fraction
of reactions activated, thus could be interpreted as pathways. Thus,
SPMFA is effective in the analysis large metabolic networks.

References

1. Barrett CL, Herrgard MJ, Palsson B (2009)
Decomposing complex reaction networks using
random sampling, principal component analysis
and basis rotation. BMC Syst Biol 3(1):30

2. Yao F, Coquery J, Lê Cao K-A (2012) Indepen-
dent principal component analysis for biologi-
cally meaningful dimension reduction of large
biological data sets. BMC Bioinf 13(1):1

3. Folch-Fortuny A, Marques R, Isidro IA,
Oliveira R, Ferrer A (2016) Principal elemen-
tary mode analysis. Mol BioSyst 12(3):737–746

4. Bhadra S, Blomberg P, Castillo S, Rousu J
(2017) Principal metabolic flux mode analysis.
bioRxiv, p. 163055

5. Ma S, Dai Y (2011) Principal component anal-
ysis based methods in bioinformatics studies.
Brief Bioinform 12(6):714–722

6. Shlens J (2014) A tutorial on principal compo-
nent analysis. Preprint, arXiv:1404.1100

7. Mackey LW (2009) Deflation methods for
sparse PCA. In: Advances in neural information
processing systems, pp. 1017–1024

8. Zou H, Hastie T, Tibshirani R (2006) Sparse
principal component analysis. J Comput Graph
Stat 15(2):265–286

9. Orth JD, Thiele I, Palsson BØ (2010)
What is flux balance analysis? Nat Biotechnol
28(3):245–248

10. Raman K, Chandra, N (2009) Flux balance
analysis of biological systems: applications and
challenges. Brief Bioinform 10(4):435–449

11. Tibshirani R (1996) Regression shrinkage and
selection via the lasso. J R Stat Soc Ser B
Methodol 58(1):267–288

12. Hayakawa K, Kajihata S, Matsuda F, Shimizu
H (2015) 13 c-metabolic flux analysis in
s-adenosyl-l-methionine production by
Saccharomyces cerevisiae. J Biosci Bioeng
120(5):532–538

13. Frick O, Wittmann C (2005) Characterization
of the metabolic shift between oxidative and fer-
mentative growth in Saccharomyces cerevisiae
by comparative 13 c flux analysis. Microb Cell
Factories 4(1):1

14. von Stosch M, de Azevedo CR, Luis M,
de Azevedo SF, Oliveira R (2016) A principal
components method constrained by elementary
flux modes: analysis of flux data sets. BMC
Bioinf 17(1):200

15. Lipp T, Boyd S (2016) Variations and extension
of the convex–concave procedure. Optim Eng
17(2):263–287

16. Herrgård MJ, Lee B-S, Portnoy V, Palsson
BØ (2006) Integrated analysis of regulatory
and metabolic networks reveals novel regula-
tory mechanisms in Saccharomyces cerevisiae.
Genome Res 16(5):627–635

17. Jensen PA, Lutz KA, Papin JA (2011) Tiger:
toolbox for integrating genome-scale metabolic
models, expression data, and transcriptional
regulatory networks. BMC Syst Biol 5(1):147

Chapter 12

Analyzing Tandem Mass Spectra Using the DRIP Toolkit:
Training, Searching, and Post-Processing

John T. Halloran

Abstract

Tandem mass spectrometry (MS/MS) is a high-throughput technology used to identify the proteins
present in a complex, biological sample. Critical to MS/MS is the ability to accurately identify the peptide
responsible for producing each observed spectrum. Recently, a dynamic Bayesian network (DBN) approach
was shown to achieve state-of-the-art accuracy for this peptide identification problem. Modeling the
stochastic process by which a peptide produces an MS/MS spectrum, this DBN for Rapid Identification of
Peptides (DRIP) uses probabilistic inference to efficiently determine the most probable alignment between
a peptide and an observed spectrum. DRIP’s dynamic alignment strategy improves upon standard “static”
alignment strategies, which rely on fixed quantization of the temporal axis of MS/MS data, in several
significant ways. In particular, DRIP allows learning non-linear shifts of the temporal axis and, owing to
the generative nature of the model, accurate feature extraction for substantially improved discriminative
analysis (i.e., Percolator post-processing), all of which are supported in the DRIP Toolkit (DTK). Herein
we describe how DTK may be used to significantly improve MS/MS identification accuracy, as well as
DTK’s interactive features for fine-grained analysis, including on the fly inference and plotting attributes.

Key words DRIP, Tandem mass spectrometry, Shotgun proteomics, Dynamic Bayesian networks,
DBNs, Graphical models

1 Introduction

The most widely used method to identify the proteins present
in a complex biological sample consists of liquid chromatography
followed by tandem mass spectrometry (MS/MS), commonly
called shotgun proteomics. With the original complex sample as
input, a typical shotgun proteomics experiment begins by first
digesting the proteins into peptides using a digesting agent (such
as trypsin). Each peptide is then loaded into a mass spectrometer
via liquid chromatography and undergoes two rounds of mass
spectrometry. The first round of mass spectrometry (called the
MS1 phase) measures the precursor mass and charge of the intact
peptide. In the second round of mass spectrometry (called the

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_12, © Springer Science+Business Media, LLC, part of Springer Nature 2018

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_12&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_12

164 John T. Halloran

Fig. 1 Example tandem mass spectrum, the generating peptide of which is LWEPLLDVLVQTK with precursor
charge 2+. The b- and y-ion peaks of the theoretical spectrum are colored blue and red, respectively. The
remaining spurious peaks are called insertions, colored in gray

MS2 phase), the intact peptide is ionized and broken down into
its constituent fragment ions, resulting in a spectrum where the x-
axis measures mass-to-charge (abbreviated as m/z) and the y-axis
measures relative abundance at an m/z value (i.e., intensity). An
example observed spectrum is illustrated in Fig. 1. At the output
of this entire process is a collection of spectra typically numbering
in the tens-to-hundreds of thousands, where each spectrum in the
collection is representative of a peptide from the original complex
sample. A key challenge in shotgun proteomics is thus accurately
identifying each peptide responsible for generating each observed
MS/MS spectrum.

The most accurate methods identify MS/MS spectra by search-
ing a database of peptides. Candidate peptides from the database
are mapped to a spectrum of idealized fragment ions (called the
theoretical spectrum, comprised of suffix and prefix ions called b-
and y-ions, respectively) and compared to an observed spectrum
using a scoring function. The pair consisting of a candidate peptide
and observed spectrum is typically referred to as a peptide-spectrum
match (PSM). Many scoring functions have been proposed, all
of which discretize the temporal axis in order to compare the
theoretical and observed spectra to compute a score [2, 4, 5, 8,
10, 14, 15]. Using dynamic Bayesian networks (DBNs), a DBN
for Rapid Identification of Peptides (DRIP) takes an alternative
approach, whereby quantization of observed spectrum measure-
ments is avoided altogether.

DBNs are probabilistic models of temporal data for which
highly efficient algorithms allow tractable inference. For a given
candidate peptide and observed spectrum, the temporal sequence
modeled in DRIP is the observed spectrum, where observed peaks
are scored in their natural resolution using Gaussians centered

Analyzing Tandem Mass Spectra Using the DRIP Toolkit 165

at theoretical peak locations. Each time instance, referred to as
a frame, contains an observed peak and several random variables
dictating the current theoretical peak being accessed (used to score
the frame’s observed peak measurements). DRIP explicitly models
two prevalent phenomena as random variables in each frame: the
presence of a spurious observed peak (called an insertion) and the
absence of theoretical peaks (called deletions). Defining an align-
ment as a scoring of observed peaks by a sequence of theoretical
peaks or, equivalently, as the corresponding sequences of insertions
and deletions, DRIP thus models all possible alignments for a given
PSM. DBN inference is performed to efficiently calculate the most-
probable such alignment, also known as DRIP’s Viterbi path. The
log-likelihood of the Viterbi path (called the Viterbi score) is then
used to score peptides during a DRIP database search. For further,
extensive details of DRIP, including a general overview of DBNs,
readers are directed to [7].

The generative nature of DRIP’s scoring function affords sev-
eral important advantages over other existing approaches. Owing
to the use of Gaussians to score m/z measurements in their
natural resolution rather than relying on quantization, the expected
positions of theoretical peaks (i.e., a theoretical peak’s correspond-
ing DRIP Gaussian mean) may be learned given high-quality
training data. In cases where there is low precision when collecting
m/z measurements, such as when searching low-resolution MS2
spectra, the DRIP learned parameters are much more accurate
than scoring peptides using evenly spaced theoretical peak locations
(as is done with scoring functions relying on quantization) [6].
Owing to DRIP’s dynamic alignment strategy, a PSM’s Viterbi
path returns an abundance of information detailing how a peptide
aligns with an observed spectrum. By extracting information from
DRIP’s output Viterbi path, we are able to derive features which
significantly increase recalibration accuracy for post-processors [7]
such as Percolator [9].

The previously discussed DRIP utilizations for improved
MS/MS analysis (i.e., pre-search training, database search, and
post-search feature extraction) are readily available using the open
source DRIP Toolkit (DTK). DTK is written in Python 2.7 around
a highly efficient DBN inference engine, the Graphical Models
Toolkit (GMTK) [1]. In this work, we provide a practical guide
to effectively using DTK for each stage of MS/MS analysis.

2 Methods

DTK is comprised of major modules for pre-search learning of
parameters (using dripTrain), database search with peptide’s
ranked by their DRIP Viterbi score (using dripSearch), and
extracting features of a search algorithm’s output PSMs for

166 John T. Halloran

Fig. 2 Flowchart illustrating the inputs and outputs of the major DTK MS/MS search modules

Percolator post-processing (using dripExtract). Figure 2
illustrates the inputs and outputs of these major modules. Further
modules include dripDigest, a protein-digestion Python library
used prior to running a search, and dtk, a Python library for
plotting and interactive analysis using the Python shell (including
instantiating a DRIP PSM object and calculating its Viterbi path
in real time). For each module, a comprehensive list of input and
output parameters is accessible via the command-line or in the
respective online man page (see Note 1).

2.1 Installation DTK is written in Python and requires the following: g++, GMTK,
Python 2.7, argparse and numpy Python packages, and SWIG.
A POSIX environment is required by GMTK, so Windows users
will additionally need to install Cygwin. From here on, we assume
commands are run on a POSIX command-line using a Bash shell
(denoted by a preceding $), unless otherwise specified.

Once all prerequisite software is installed, download and unzip
the latest DTK release from: jthalloran.bitbucket.io/dripToolkit.
Navigate to the unzipped directory and run the following:

$ cd p y F i l e s/ p f i l e
$ swig −c++ −python l i b p f i l e . i
$ CC=g++ python se tup . py b u i l d _ e x t − i

This builds and links the pFile library for use in Python
(see Note 2), necessary to efficiently represent MS/MS data for
GMTK. To test that the package was correctly linked, the following
should run without error:

$./ t e s t . py

If DTK’s plotting capabilities are desired (described in Sub-
heading 2.5), matplotlib and/or Lorikeet must be installed.

https://melodi.ee.washington.edu/gmtk
https://jthalloran.bitbucket.io/dripToolkit
http://uwpr.github.io/Lorikeet

Analyzing Tandem Mass Spectra Using the DRIP Toolkit 167

2.2 Pre-search
Parameter Learning
Using dripTrain

Given a high-quality set of PSMs, the dripTrain module learns
DRIP Gaussian parameters using the Expectation-Maximization
(EM) algorithm [3]. The learned DRIP Gaussian means corre-
spond to the expected m/z locations of theoretical peaks and the
learned DRIP Gaussian variance corresponds to the uncertainty
along the intensity axis. The output parameter files are then
available for use during a database search (using dripSearch) or
feature extraction (using dripExtract). These learned parameters
are particularly useful for analyzing MS/MS data where there is
imprecision in m/z measurements (i.e., low-resolution MS2 data
where the fragment-mass tolerance is typically a Dalton or greater).

dripTrain requires two files: the library of PSMs, specified
using parameter --psm-library, and the corresponding .ms2
file containing the MS/MS spectra, specified using parameter
--spectra. The file format for the PSM library should be tab-
delimited with fields Peptide, Scan, and Charge. Note that the
header listing the (case-sensitive) PSM fields is required, although
the order these fields are listed does not matter. It is assumed the
MS/MS spectra have unique scan identification numbers. Multiple
peptides per spectrum may be specified in the PSM library. Variable
and static modifications must be specified (discussed in detail
in Subheading 2.3.2). The learned Gaussian means and variance
will be written to files specified by --output-mean-file and
--output-covar-file, respectively. As an example, the DRIP
parameters used in [6] may be learned by running the following
in the unzipped DTK directory:

$./ d r i pTr a i n . py \
−−psm− l i b r a r y da ta/r i p t i d e T r a i n i n g D a t a/

s t r i c t −o r b i t r a p . psm \
−−s p e c t r a da ta/r i p t i d e T r a i n i n g D a t a/ s t r i c t −

o r b i t r a p . ms2 \
−−output−mean− f i l e dr ipLearned . means \
−−output−covar− f i l e dr ipLearned . co v a r s \
−−mods−spec ’C+57.0214 ’

where data/riptideTrainingData contains high-quality PSMs
(included in the DTK repository) collected in [11], we’ve specified
a static modification of Carbamidomethyl, and the learned Gaus-
sian means and variances are written to dripLearned.means and
dripLearned.covars, respectively. Specified static and variable
modifications should match the data collection digest enzyme and
search digestion parameters so that theoretical spectra are correctly
computed. The output parameter files are written in GMTK’s
parameter specification and may be used in all other DTK modules.

2.3 DRIP
Database Search

A DRIP database search proceeds in two stages: the protein
database is digested and candidate peptide sequences produced,
then MS/MS spectra are identified through the scoring of candi-

168 John T. Halloran

date peptides. We now describe completing each such stage using
the modules dripDigest and dripSearch.

2.3.1 Pre-search
Database Digestion
Using dripDigest

Prior to a search, the protein database (in FASTA format) must first
be digested using dripDigest. The resulting peptides are written
to a compact binary format for quick and efficient reading from
disk. dripDigest supports common digestion settings, such as
static modifications (including N- and C-terminal mods), variable
modifications (including N- and C-terminal mods), partial digests,
full digests, missed cleavages, peptide mass and length restrictions,
and decoy peptide generation. dripDigest also supports out-of-
core processing in anticipation of variable modifications. If memory
consumption is a concern, the total number of peptides held in
memory may be specified using the option --peptide-buffer.
Note that the value of --peptide-buffer is also used during
the subsequent search (i.e., running dripSearch) when loading
candidate peptides into memory. The default buffer value of
100,000 works well in practice and should accommodate most
modern workstations with several gigabytes of memory. When
running a target-decoy search, setting --recalibrate to true will
produce a disjoint set of search decoys used to renormalize DRIP
scores.

dripDigest and all other DTK modules utilize a command-
line interface with fine-grained parameter options (see Note 3),
as is commonly encountered in MS/MS software. As an example,
the following specifies a digest with variable modifications and
static TMT labeling for an example protein database included
(data/plasmo_Pfalciparum3D7_NCBI.fasta) in the DTK repo:

$./ d r i pD ige s t . py \
−− f a s t a da ta/plasmo_Pfalciparum3D7_NCBI . f a s t a \
−−d ige s t −d i r dr ipDiges t −output \
−−custom−enzyme ’ [K] | [X] ’ \
−−min−l ength 7 \
−−mods−spec ’3M+15.9949 ,K+229.16293 ’ \
−−nterm−pept ide−mods−spec ’X+229.16293 ’ \
−−decoys True

The resulting binary files containing the digested peptides are writ-
ten to directory dripDigest-output. If ASCII files are desired to
easily view the digested target and decoy peptides, such files will be
produced in the output directory by setting --peptide-list to
true.

The --custom-enzyme follows a regular expression syntax and
specifies cleaving at each K proceeded by any amino acid (signified
by X). Common cleavages (e.g., trypsin, lys-c, glu-c, etc.) may
also be specified by keyword using the parameter --enzyme. The
minimum peptide length is specified so that all digested peptides of
length shorter than seven are discarded. Modifications are specified

Analyzing Tandem Mass Spectra Using the DRIP Toolkit 169

using syntax [n][U]±[δ], where n is the maximum number of times
the modification may appear in the peptide, U is the set of amino
acids being modified, and δ is the mass offset. A static modification
is specified when n is omitted, otherwise the modification is
variable. In our example, we’ve specified up to three variable
modifications of M (methionine) and a static modification of K
(lysine). In the case of N-terminal and C-terminal modifications,
the syntax closely follows that of a general modification with the
caveat that when n = 1, a variable N- or C-terminal modification
is specified and when n is omitted, an N- or C-terminal static
modification is specified (as is the case in our example).

2.3.2 Spectra
Identification Using
dripSearch

Once the protein database has been digested, we may proceed to
score candidate peptides and identify the spectra of an MS/MS
dataset. dripSearch receives as input the directory of digested
peptides output by dripDigest, the MS/MS dataset to be iden-
tified, and, optionally, the parameters learned using dripTrain.
Currently, the MS/MS dataset must be in the .ms2 file format.
The precursor mass tolerance, used during data acquisition in the
MS1 phase, is specified either in units of Daltons or parts-per-
million (ppm) using the parameter --precursor-window-type.
By default, the precursor mass window is specified in Daltons.

Before proceeding, we note that DRIP may be operated in
two “modes.” In the first mode, where --high-res-ms2 is set
to false, the learned parameters output by dripTrain are loaded
and used to specify the theoretical peak centers and intensity
variance for DRIP scoring. The current assumed granularity of
the m/z axis in this first mode is approximately 1 Da, so that
there are 2000 theoretical peak means (corresponding to the
maximum measurable m/z value). In the second mode, where
--high-res-ms2 is set to true, the theoretical peak centers used
by DRIP are set to the exact b- and y-ion values of each candidate
peptide and the m/z variance (i.e., the anticipated uncertainty
along the m/z axis) is set such that 99.9% of the m/z Gaussian
mass lies within the value fragment-mass-tolerance specified by
parameter --high-res-gauss-dist (see Note 4). These two
modes reflect the accuracy of m/z measurements collected using
high-resolution and low-resolution machines, and the specified
value of --high-res-ms2 should reflect the machine resolution
used during the MS2 phase. We note that, owing to the use of
the general-purpose DBN-inference engine GMTK, the underlying
DRIP model may be easily tailored to suit specific needs without
the need for rigorous recoding (see Note 5).

As an example, the following identifies data/malariaTest.ms2
(included in the DTK repository), collected from high-resolution
MS1 and MS2 scans of a Plasmodium falciparum sample [13],
searching the output directory dripDigest-output produced by
dripDigest:

170 John T. Halloran

$./ d r i pSea r ch . py \
−−d ige s t −d i r ’ d r ipDiges t −output ’ \
−−s p e c t r a da ta/m a l a r i a T e s t . ms2 \
−−precur so r −window−type ’ppm’ \
−−precur so r −window 50 \
−−high−r e s −ms2 true \
−−high−r e s −gauss−d i s t 0.05 \
−−output dr ipSea rch −plasmodium−output

DRIP is being run in high-resolution MS2 mode. The search
results will be written to the tab-delimited file dripSearch-
plasmodium-output.txt. A narrow 50 ppm precursor mass
windows is used, as well as a stringent fragment-mass-
tolerance of 0.05 Da. Note that we refer to the value of
--high-res-gauss-dist as a fragment-mass-tolerance due to
the similarities between its meaning in DTK (i.e., most of an m/z

Gaussian’s mass is centered in this region) and the use of this term
in all other search algorithms (i.e., the quantization bin-width).
However, unlike other search algorithms, fragment-ion-matches
may still occur for observed peaks further from a theoretical
peak’s Gaussian center than the fragment-mass-tolerance, as DRIP
considers all possible scorings of observed peaks by theoretical
peaks when computing the most-probable alignment (a further
discussion of when this might occur may be found in [7]). Thus,
the value specified by --high-res-gauss-dist is not a strict
fragment-ion-match cutoff, but rather dictates the variance of
theoretical Gaussians used to score m/z measurements relative to
their centers.

Users with multithreaded systems may run dripSearch on
multiple threads by specifying the value of --num-threads. For
users with access to a high throughput compute (HTC) cluster,
dripSearch also supports the use of general HTC job schedulers,
such as HTCondor or Univa Grid Engine (see Notes 6 and 7).
In cluster mode, dripSearch is run in a MapReduce fashion
(illustrated in Fig. 3), where the spectra and candidate peptides to
be scored are partitioned into N jobs, the jobs are submitted and
run on the cluster, and the search results are copied back to the
local directory and merged (see Note 8).

To run the previous search example on a cluster, first set the
following environment variable:

$ export DRIPTOOLKIT=< d i r e c t o r y >

where <directory > is the unzipped DTK directory containing
dripSearch.py. Next, split the data and create the jobs to be
submitted to the cluster by adding the --num-cluster-jobs
option when calling dripSearch:

$./ d r i pSea r ch . py \
−−d ige s t −d i r ’ d r ipDiges t −output ’ \

Analyzing Tandem Mass Spectra Using the DRIP Toolkit 171

...
Fig. 3 Flowchart of dripSearch cluster usage

−−precur so r −window−type ’ppm’ \
−−precur so r −window 50 \
−−high−r e s −ms2 true \
−−high−r e s −gauss−d i s t 0.05 \
−−s p e c t r a da ta/m a l a r i a T e s t . ms2 \
−−output dr ipSea rch −plasmodium−output \
−−num−c l u s t e r −jobs 10

The resulting binary files for each job will be written to
local directory encode. To accommodate different cluster envi-
ronments, DRIP generates a Bash script (see Note 9) for easy
submission to the cluster queue. A list of all generated Bash scripts
(one per job) is written to encode/clusterJobs.txt. Upon
completion, job results are copied over to local directory log.
Once all jobs are completed, the results may be merged together
by running:

$./ d r i pSea r ch . py \
−−merge−c l u s t e r −r e s u l t s True \
−−output dr ipSea rch −plasmodium−output

The final search results will be written to tab-delimited file
dripSearch-plasmodium-output.txt, the fields of which are
described in Table 1.

Note that, if running a multicharge target-decoy search, it is
recommended --recalibrate be set to true. In this case, a new,
disjoint set of decoys will be generated and used to recalibrate
the discrepancy in DRIP score distributions for differently charged
PSMs (higher charged PSMs tend to produce larger scores than
unity or doubly charged PSMs). Although this increases search
time, this step is critical to accurately rank and compare PSMs of
different charge-states.

172 John T. Halloran

Table 1
Tab-delimited fields output by dripSearch

Field Description

Kind Target (t), decoy (d), or recalibration decoy
(r) PSM

Scan The identifying number of each scan

Score The DRIP score for this PSM

Peptide The peptide sequence

Obs_Inserts* Inferred number of insertions (observed noise
peaks)

Theo_Deletes* Inferred number of deletions (missing theoret-
ical peaks)

Obs_peaks_scored* Inferred number of non-inserted peaks

Theo_peaks_used* Inferred number of non-deleted theoretical
peaks

Sum_obs_intensities* Sum of the inferred non-inserted peak intensi-
ties

Sum_scored_mz_dist* Sum of the absolute peak m/z distances from
the DRIP Gaussian means used to score each
non-inserted observed peak

Charge Charge state of the PSM

Flanking_nterm Amino acid preceding this peptide in the parent
protein

Flanking_cterm Amino acid following this peptide in the parent
protein

Protein_id String consisting of Kind followed by the num-
ber the protein appears in the target/decoy
database

Var_mod_seq String the characters of which denote the type
of variable mod applied to each of a PSM’s
amino acids (only output if variable mods are
passed into dripDigest). 0 denotes no variable
mod, 1 denotes a variable mod (specified in
mods-spec), 2 denotes an n-terminal variable
mod (specified in nterm-peptide-mods-spec),
and 3 denotes a c-terminal variable mod (spec-
ified in cterm-peptide-mods-spec)

Fields highlighted with * indicate features extracted using DRIP’s calculated Viterbi
path (described further in Subheading 2.4)

Analyzing Tandem Mass Spectra Using the DRIP Toolkit 173

2.4 Feature
Extraction Using
dripExtract

DRIP’s Viterbi path contains a large amount of information
describing the manner in which a peptide aligns with an observed
spectrum. This information may be used to extract highly detailed
features, described in Table 1, for significantly improved target-
decoy classification in Percolator [7]. DRIP feature extraction
for arbitrary scoring algorithms is supported through the module
dripExtract.

dripExtract requires as input a file of PSMs (in either tab-
delimited or PIN file format) and the corresponding MS/MS
dataset (in .ms2 format). If the PSM file is a general tab-delimited
file, the following fields must be present (descriptions are available
in Table 1): Kind, Scan, Charge, Peptide, and Score. If a PIN file
is supplied, DRIP features may be appended to the Percolator
features already listed by setting the parameters --write-pin
and --append-to-pin to true. The parameters learned using
dripTrain may be used (if --high-res-ms2 is set to false) by
specifying the learned mean and covariance files using param-
eters --learned-means and --learned-covariances, respec-
tively. If analyzing high-resolution MS2 spectra, dripExtract may
run in high-res mode by setting --high-res-ms2 to true and
--high-res-gauss-dist to the desired fragment-mass-tolerance
(as described in Subheading 2.3.2). Peptide modifications are sup-
plied in the previously described DTK format (Subheading 2.3.1).
As with all other modules, specified static and variable modifica-
tions should match the data collection digest enzyme and search
digestion parameters. As with dripSearch, feature extraction may
be run in multithreaded environments by specifying the desired
number of threads with parameter -num-threads.

As an example, assuming the same utilized database and
digestion settings as in Subheading 2.3.1, consider having run
a Tide [12] XCorr search on data/malariaTest.ms2 with
the same search settings as described in Subheading 2.3.2 and
--pin-output True, resulting in PIN file crux-output.pin. We
may extract DRIP features for these PSMs by running:

$./ d r i pD ige s t . py \
−−psm− f i l e crux−output . p in \
−−s p e c t r a da ta/m a l a r i a T e s t . ms2 \
−−mods−spec ’3M+15.9949 ,K+229.16293 ’ \
−−nterm−pept ide−mods−spec ’X+229.16293 ’ \
−−high−r e s −ms2 true \
−−high−r e s −gauss−d i s t 0.05 \
−−num−t h r e a d s 16 \
−−pin−output True \
−−append−to−pin True \
−−output d r i pEx t r a c t ed −crux−output . p in

174 John T. Halloran

Note that parameters 3–4 match the peptide modification
settings from Subheading 2.3.1 and 5–6 match the DRIP search
setting from Subheading 2.3.2.

2.5 Fine-Grained
Analysis Tools

DTK offers an importable Python library for detailed analysis.
Using this library, a user may specify a peptide and a spectrum,
instantiate a PSM, and calculate DRIP’s Viterbi path in real time
on the Python shell (see Note 10). A PSM’s Viterbi path may then
be plotted to view the maximal alignment between the theoretical
and observed spectra. Alternatively, sets of PSMs may just as easily
be specified and analyzed.

Once the Python library dtk.py (found in the unzipped DTK
directory) is imported, spectra may then be loaded using function
load_spectra() and PSMs may be specified using psm(). As
an example, consider the MS/MS dataset included with DTK,
data/test.ms2, for which we’d like to plot the Viterbi paths of
the generating peptides. In the following, lines beginning with ≫
denote commands entered in the Python interactive shell.

We begin by invoking the Python interactive shell and import-
ing the library:

$ python
>>> import dtk

Next, we load the spectra into memory:

>>> s p e c t r a = ’ da ta/ t e s t . ms2 ’
>>> s = dtk . l o a d _ s p e c t r a (s p e c t r a)

dtk.load_spectra(spectra) returns a dictionary of
MS/MS spectra, the keys of which are spectrum scan numbers.
Assuming parameters learned using dripTrain were written to
learned.means and learned.covars, we may instantiate a DRIP
PSM for the spectrum with scan number 6028 using:

>>> charge = 2
>>> scan = 6028
>>> pep t ide = ’TGPSPQPESQGSFYQR’
>>> highRes = F a l s e
>>> mods = ’C+57.0214 ’
>>> nterm_mods = ’ ’
>>> cterm_mods = ’ ’
>>> p = dtk . psm(pept ide , s [scan] , charge ,

highRes ,
’ l e a rned . means ’ , ’ l e a rned . covar s ’ ,

mods , nterm_mods , cterm_mods)

Peptide modifications passed to psm() follow the normal DTK
convention. At this point, the PSM’s theoretical spectrum has
been calculated, all data files have been produced, GMTK has
been called, and the PSM’s Viterbi path loaded into memory. All

Analyzing Tandem Mass Spectra Using the DRIP Toolkit 175

Table 2
Attributes of DTK PSM object p instantiated using Python library dtk.py

Attributes Description

p.peptide Peptide string

p.spectrum Observed spectrum, instance of spectrum
object

p.scan Scan ID number

p.num_ions Number of unique b- and y-ions

p.num_dels Number of deletions

p.num_frames Number of observed peaks

p.insertion_sequence Decoded sequence of Booleans denoting
whether the ith peak in the observed spectrum
is an insertion or not

information is accessible through the returned DRIP PSM object
p, the attributes of which are listed in Table 2.

Once a DTK PSM has been instantiated, the PSM’s
most-probable sequences of insertions and deletions (i.e., the
Viterbi path) may be easily plotted by using the function
plot_drip_viterbi() (the matplotlib Python library must
be installed to use this function). The following continues our
earlier example, plotting the PSM’s calculated Viterbi path:

>>> v i t P l o t = ’ scan%d−charge%d−pep t ide%s . png ’ %
(scan_number , charge , pep t ide)

>>> p . p l o t _ d r i p _ v i t e r b i (v i t P l o t)

An example such DTK plot is illustrated in Fig. 1. A set of
PSMs’ Viterbi paths may also be plotted all at once using the
function plot_psms() (see Note 11), given the output file of a
DRIP search. For example, assuming dripSearch was run over
data/test.ms2 (an example such search is available in test.sh
of the unzipped DTK directory), resulting in the output file of
PSM identifications dripSearch-test-output.txt, we plot the
Viterbi paths of these PSMs with the following:

>>> import dtk
>>> psms = ’ dr ipSea rch −t e s t −output . t x t ’
>>> s p e c t r a = ’ da ta/ t e s t . ms2 ’
>>> html_output = ’ psms . html ’
>>> dtk . p lot_psms (psms , s p e c t r a , html_output)

The resulting Viterbi path plots are written to the local
directory in PNG format. The output HTML file psms.html
contains links to each plot (displayed in Fig. 4) so that they may
be quickly and easily viewed in a web browser.

176 John T. Halloran

Fig. 4 Browser screenshot of DTK produced HTML file linking to plots of PSM Viterbi paths

2.5.1 Interactive
Analysis Using Lorikeet

DTK supports interactive MS/MS analysis through the use of the
Lorikeet Javascript plugin. After HTML files have been generated,
users may select and view different fragmentation events for a
given PSM, as well as inspect specific portions of the observed
spectrum interactively within a browser (Fig. 5 displays a screenshot
of such an HTML file opened in Google Chrome). To use this
functionality, Lorikeet version 0.3.5 must be downloaded and
unzipped in the main DTK directory (see Note 12).

Lorikeet file generation is supported through the dtk function
gen_lorikeet(), which accepts as inputs an MS/MS dataset
and a PSM file. The MS/MS data must be in the .ms2 file
format. For the PSM file, any general tab-delimited file may be
used, provided that PSMs have fields denoting their spectrum
scan number, charge, peptide sequence, and score. Users then
provide which fields correspond to which PSM feature when call-
ing gen_lorikeet(). Peptide modifications follow the standard
DTK specification. For instance, assuming the earlier PSM file
dripSearch-test-output.txt and dataset data/test.ms2, we
would use DTK to generate the Lorikeet HTML files with the
following:

>>> import dtk
>>> psmFi le = ’ dr ipSea rch −t e s t −output . t x t ’
>>> ms2=" data/ t e s t . ms2"
>>> s c a n F i e l d = ’ Scan ’
>>> c h a r g e F i e l d = ’ Charge ’
>>> p e p t i d e F i e l d = ’ Pept ide ’
>>> s c o r e F i e l d = ’ Score ’
>>> mods = ’C+57.0214 ’

Analyzing Tandem Mass Spectra Using the DRIP Toolkit 177

Fig. 5 Screenshot of DTK produced HTML file, loaded in Google Chrome, for interactive analysis using the
Lorikeet plugin

Fig. 6 Browser screenshot of DTK produced HTML file linking to interactive PSM
plots using Lorikeet

>>> nterm_mods = ’ ’
>>> cterm_mods = ’ ’
>>> dtk . g e n _ l o r i k e e t (psmFile , ms2 , ’ htmFi le s ’ ,

’ t e s t . html ’ , mods ,
nterm_mods , cterm_mods ,
s c anF i e l d , pep t i deF i e l d ,
cha rgeF i e ld , s c o r e F i e l d)

The resulting HTML files are written to subdirectory
htmlFiles and the HTML file test.html contains links to each
individual file for easy navigation (displayed in Fig. 6).

178 John T. Halloran

3 Notes

1. For each DTK module, a list of parameters (accompanied
by a short description and valid input type) may be viewed
by running --help. For instance, to view a list of DTK
training options, run ./dripTrain.py --help. Alternatively,
the following are main pages for each module describing both
their usage and parameter options:

• jthalloran.bitbucket.io/dripToolkit/dripTrain.html
• jthalloran.bitbucket.io/dripToolkit/dripDigest.html
• jthalloran.bitbucket.io/dripToolkit/dripSearch.html
• jthalloran.bitbucket.io/dripToolkit/dripExtract.html
• jthalloran.bitbucket.io/dripToolkit/dtk.html

2. If you are receiving error message:

ImportError : No module named l i b p f i l e

please remember to first build and link the pFile library, as
described in Subheading 2.1.

3. As with all MS/MS software, the DTK function calls can be
quite long. It is thus helpful to write and call these commands
within a shell script (such as Bash). Due to the overlap in
parameters between modules (for instance, specified peptide
modifications), this also decreases erroneous calls and is an
effective form of experiment recordkeeping for reproducibil-
ity/debugging.

4. Setting the dripSearch and dripExtract parameter
--precursor-filter to true is very effective on high-
resolution MS2 data. When true, this parameter tightens the
filtering window around the observed precursor mass during
observed spectrum preprocessing.

5. Thanks to the use GMTK, the underlying DRIP model may
be easily altered by modifying the function create_drip_
structure() in file pyFiles/dripEncoding.py. The qual-
itative effects of changes to the model may be easily viewed by
using dtk to plot the resulting Viterbi paths for test spectra
(this is especially useful for debugging).

6. Due to the heavy compute and I/O required, running a DRIP
search is most effective using an HTC cluster with dripSearch
in cluster mode. Feature extraction using dripExtract is
much less computationally intensive and should complete
quickly using only a multithreaded workstation.

7. For compute environments with a large amount of main
memory, the maximum number of peptides loaded into main

https://jthalloran.bitbucket.io/dripToolkit/dripTrain.html
https://jthalloran.bitbucket.io/dripToolkit/dripDigest.html
https://jthalloran.bitbucket.io/dripToolkit/dripSearch.html
https://jthalloran.bitbucket.io/dripToolkit/dripExtract.html
https://jthalloran.bitbucket.io/dripToolkit/dtk.html

Analyzing Tandem Mass Spectra Using the DRIP Toolkit 179

memory during database search may be increased using param-
eter --peptide-buffer when calling dripDigest.

8. If running dripSearch in cluster mode, all spectra to be
searched should be passed to dripSearch all at once. Upper
and lower bounds on the m/z axis are computed and used to
filter theoretical peaks outside of these bounds.

9. The dripSearch generated Bash scripts for cluster use may
be easily customized for specific compute clusters by editing
pyFiles/cluster.py.

10. The DRIP scores reported by different modules dripSearch,
dripExtract, and dtk may differ. This is due to dripExtract
and dtk not supporting dripSearch’s recalibration function-
ality (performed when recalibrate is set to true), although
scores should agree if recalibration is not turned on and all
data/parameters agree between the three modules.

11. The dtk.py source illustrates how to call the dripExtract
API (i.e., runDripExtract()) if custom manipulation of
DRIP Viterbi paths in Python is desired.

12. If using Cygwin, note that Windows unzip creates an extra
parent directory (unlike standard Unix unzip). When using
Lorikeet in this situation, please move the unzipped subdirec-
tory into the DTK repo (otherwise the Lorikeet Javascript will
not load in your browser).

References

1. Bilmes J, Zweig G (2002) The Graphical Mod-
els Toolkit: an open source software system for
speech and time-series processing. In: Proceed-
ings of the IEEE international conference on
acoustics, speech, and signal processing

2. Craig R, Beavis RC (2004) Tandem: matching
proteins with tandem mass spectra. Bioinfor-
matics 20:1466–1467

3. Dempster AP, Laird NM, Rubin DB (1977)
Maximum likelihood from incomplete data via
the EM algorithm. J R Stat Soc Ser B 39:1–22

4. Eng JK, McCormack AL, Yates, JR III (1994)
An approach to correlate tandem mass spectral
data of peptides with amino acid sequences in
a protein database. J Am Soc Mass Spectrom
5:976–989

5. Geer LY, Markey SP, Kowalak JA, Wagner L,
Xu M, Maynard DM, Yang X, Shi W, Bryant
SH (2004) Open mass spectrometry search
algorithm. J Proteome Res 3(5):958–964

6. Halloran JT, Bilmes JA, Noble WS (2014)
Learning peptide-spectrum alignment models
for tandem mass spectrometry. In: Uncertainty

in artificial intelligence (UAI), Quebec City,
QC. AUAI, Arlington

7. Halloran JT, Bilmes JA, Noble WS (2016)
Dynamic Bayesian network for accurate detec-
tion of peptides from tandem mass spectra. J
Proteome Res 15(8):2749–2759

8. Howbert JJ, Noble WS (2014) Computing
exact p-values for a cross-correlation shotgun
proteomics score function. Mol Cell Pro-
teomics 13(9):2467–2479. mcp–O113

9. Kall L, Storey JD, MacCoss MJ, Noble WS
(2008) Assigning significance to peptides iden-
tified by tandem mass spectrometry using decoy
databases. J Proteome Res 7(1):29–34

10. Kim S, Mischerikow N, Bandeira N, Navarro
JD, Wich L, Mohammed S, Heck AJR, Pevzner
PA (2010) The generating function of CID,
ETD, and CID/ETD pairs of tandem mass
spectra: applications to database search. Mol
Cell Proteomics 9(12):2840–2852

11. Klammer AA, Reynolds SM, Bilmes JA, Mac-
Coss MJ, Noble WS (2008) Modeling pep-
tide fragmentation with dynamic Bayesian net-

180 John T. Halloran

works for peptide identification. Bioinformatics
24(13):i348–356

12. McIlwain S, Tamura K, Kertesz-Farkas A, Grant
CE, Diament B, Frewen B, Howbert JJ, Hoop-
mann MR, Käll L, Eng JK et al (2014) Crux:
rapid open source protein tandem mass spec-
trometry analysis. J Proteome Res 13:4488–
4491

13. Pease BN, Huttlin EL, Jedrychowski MP, Tale-
vich E, Harmon J, Dillman T, Kannan N,
Doerig C, Chakrabarti R, Gygi SP, Chakrabarti
D (2013) Global analysis of protein expres-

sion and phosphorylation of three stages of
Plasmodium falciparum intraerythrocytic devel-
opment. J Proteome Res 12(9):4028–4045

14. Singh AP, Halloran J, Bilmes JA, Kirchoff K,
Noble WS (2012) Spectrum identification
using a dynamic Bayesian network model of
tandem mass spectra. In: Uncertainty in artifi-
cial intelligence (UAI), Catalina Island. AUAI,
Arlington

15. Wenger CD, Coon JJ (2013) A proteomics
search algorithm specifically designed for high-
resolution tandem mass spectra. J Pro-
teome Res 12(3):1377–1386

Chapter 13

Sparse Modeling to Analyze Drug–Target Interaction
Networks

Yoshihiro Yamanishi

Abstract

Most drugs produce their phenotypic effects by interacting with target proteins, and understanding the
molecular features that underpin drug–target interactions is crucial when designing a novel drug. In this
chapter, we introduce the protocols that have driven recent advances in sparse modeling methods for
analyzing drug–target interaction networks within a chemogenomic framework. In this approach, the
chemical structures of candidate drug compounds are correlated with the genomic sequences of the
candidate target proteins. We demonstrate the use of sparse canonical correspondence analysis and sparsity-
induced binary classifiers to extract the underlying molecular features that are most strongly involved
in drug–target interactions. We focus on drug chemical substructures and protein domains. Workflows
for applying these methods are presented, and an application is described in detail. We consider the
characteristics of each method and suggest possible directions for future research.

Key words Drug–target interactions, Sparse modeling, Feature extraction, Chemogenomics,
Chemical substructures, Protein domains

1 Introduction

Most drugs achieve their phenotypic effects by interacting with
target proteins (drug–target interactions). It is therefore important
to identify the full set of drug–target interactions, including
not only primary targets but also off-targets. This also improves
the understanding of polypharmacology. Determining potential
drug–target interactions experimentally is time consuming and
costly, creating a strong incentive to develop computational meth-
ods for predicting such interactions. Traditional computational
techniques for predicting drug–target interactions or compound–
protein interactions have been categorized into ligand-based and
structure-based approach. Ligand-based approaches, which include
quantitative structure activity relationship model, relate drug can-
didate compounds with the known ligands of a target protein and
then apply statistical machine learning techniques to predict the

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_13, © Springer Science+Business Media, LLC, part of Springer Nature 2018

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_13&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_13

182 Yoshihiro Yamanishi

binding patterns of the proteins [1, 2]. However, the performance
of such approaches deteriorates when only a small number of
appropriate ligands are present in the learning set. Structure-based
approaches, which include docking simulations, are powerful, but
they can only be applied when the 3D structure of the protein is
available [3]. This limitation is particularly serious in the case of
membrane proteins such as G protein-coupled receptors (GPCRs),
because few of whose structures are known.

Chemogenomics is an emerging approach to exploring the
relationship between the chemical space of bioactive compounds
and the genomic space of all proteins. It allows chemical
and biological information to be generalized across possible
compound-protein pairs [4–6]. Genome-wide computational
prediction of drug–target or compound–protein interactions has
become an important research area in chemogenomics. Within the
chemogenomic framework, a range of computational methods
have been developed to predict drug–target interactions or
compound–protein interactions [7–13]. While different methods
apply different algorithms, there is a shared assumption that
similar compounds will interact with similar proteins. Predictions
are therefore predicated on the compound chemical structures,
protein sequences or structures, and partially known interactions.
However, the chemogenomic methods only output predictions
and the predictive models are not interpretable. This makes
it challenging to derive biological insights into the molecular
mechanisms of the drug–target interactions.

An understanding of the molecular features underpinning the
drug–target interaction is also crucial in the design of novel drugs.
Chemical substructures (e.g., pharmacophores, functional groups)
and protein functional sites (e.g., domains and motifs) tend to
be conserved across a range of drug–target interactions. Thus,
the molecular features of these interactions may be explained by
associations between the chemical substructures of the drug and
the functional sites of the protein. Recently, a range of methods
have been developed to allow feature extraction to be used in
the analysis of drug–target interactions. One proposed approach
combined graph mining with sequence mining to identify drug
substructures and protein subsequences that appear frequently in
known interactions [14]. Sparse canonical correspondence analysis
has been used to identify ensembles of chemical substructures
and protein domains that are involved in drug–target interac-
tions [15]. Sparsity-induced binary classifiers (e.g., L1-regularized
logistic regression and L1-regularized support vector machine)
have also been applied to extract informative pairings of chemical
substructures and protein domains [16–18].

In this chapter, we discuss the protocols that have driven recent
advances in sparse modeling within the chemogenomic framework.
These relate the chemical structures of candidate drug compounds

Sparse Modeling to Analyze Drug–Target Interaction Networks 183

with the genomic sequences of candidate target proteins. Our
focus is on the use of sparse canonical correspondence analysis and
sparsity-induced binary classifiers to identify the underlying molec-
ular features that are most strongly associated with drug–target
interactions. We present workflows for applying these methods
and discuss some of their applications. The characteristics of each
method are considered and directions for future research are
suggested.

2 Materials

2.1 Drug–Target
Interactions

The drug–target interactions were taken from the DrugBank
database [19]. The target human proteins belonged to a range
of families and included enzymes, ion channels, G protein-coupled
receptors (GPCRs), transporters, and nuclear receptors. The final
dataset comprised 4809 interactions involving 1862 drugs and
1554 target proteins (Fig. 1).

2.2 Descriptors
of Target Proteins

The amino acid sequences of the target proteins were taken from
the UniProt database [20], and the associated protein domains
from the PFAM database [21]. Moreover, PFAM domains whose
proteins did not appear in the drug–target interaction set were
eliminated, leaving 876 domains. Each protein was represented as a
876 dimensional binary vector, and the presence or absence of each
PFAM domain was noted by a coding of 1 or 0, respectively. Other
possible descriptors of target proteins are discussed in Note 1.

2.3 Descriptors
of Drugs

The chemical structures of the drugs were encoded using a
chemical fingerprint in the PubChem database [22]. We applied
an 881 dimensional binary feature vector in which the presence

----- Unknown interactions
Known interactions

z1

z2

z3

x

H3C

CH2

O

CH3

CH2

CH3

H3C O

O

H2N

HO

CI

1

x2

x3

x4

x5

x6

z4

z5

Drug Target protein

Fig. 1 An illustration of the problem of drug–target interaction prediction

184 Yoshihiro Yamanishi

or absence of each substructure was coded by 1 or 0. In most
cases, drugs that appear in DrugBank are linked to compounds
in PubChem. Substructures that were not involved in the drug–
target interactions were eliminated, leaving 663 in the final set.
Other possible descriptors of drugs are discussed in Note 2.

3 Methods

3.1 Problem
Setting

1. The molecular features of a drug–target interaction can be
characterized by associations between the chemical substruc-
tures of the drug and the protein domains. A key challenge is
to extract those sets of drug chemical substructures and protein
domains that appear together in known drug–target pairings,
but not in other pairings.

2. Suppose that we have a set of nx drugs with p substructure
features, a set of nz target proteins with q domain features,
and information on drug–target interactions (nx = nz). Each
drug can then be represented as a p-dimensional feature vector
x = (x1, . . . , xp)T , and each target protein can be represented
as a q-dimensional feature vector z = (z1, . . . , zq)

T .

3.2 Sparse
Canonical
Correspondence
Analysis (SCCA)

1. Canonical correspondence analysis (CCA) is an approach to
the analysis of two heterogeneous data sets. The relationship
between canonical correspondence analysis and canonical cor-
relation analysis is discussed in Note 3. Two forms are used:
ordinary CCA (OCCA) and sparse CCA (SCCA). In this
section, we briefly introduce a feature extraction method based
on SCCA [15].

2. Two linear combinations of drugs and proteins can be modeled
as ui = αT xi (i = 1, 2, . . . , nx) and vj = γ T zj (j =
1, 2, . . . , nz), respectively, where α = (α1, . . . , αp)T and β =
(γ1, . . . , γq)

T are weight vectors. The goal of OCCA is to
estimate those weight vectors α and γ that maximize the
following canonical correlation coefficient:

corr(u, v) =
∑

i,j I (xi , zj)α
T xi · γ T zj

√∑
i dxi

(αT xi)2
√∑

j dzj
(γ T zj)2

, (1)

where I (·, ·) is an indicator function which returns 1 if drug xi

and protein zj interact and 0 otherwise, dxi
(resp. dzj

) is the
degree of xi (resp. zj), the degree is the number of interaction
partners,

∑
i ui = 0 (resp.

∑
j vj = 0) is assumed, and u

(resp. v) is denoted as the canonical components for x (resp. z)
[23].

Sparse Modeling to Analyze Drug–Target Interaction Networks 185

3. In OCCA, the maximization problem can be written as follows:

max

⎧
⎨

⎩
∑

i,j

I (xi , zj)α
T xi · γ T zj

⎫
⎬

⎭ subject to

∑

i

dxi
(αT xi)

2 ≤ 1,
∑

j

dzj
(γ T zj)

2 ≤ 1. (2)

Here we define the nx × nz adjacency matrix A, in which
element (A)ij is set to 1 (resp. 0) if drug xi and protein zj

interact (resp. do not interact). Let X be the nx × p matrix
defined as X = [

x1, . . . , xnx

]T , and let Z denote the nz × q

matrix defined as Z = [z1, . . . , znz

]T , assuming the columns of
X and Z to be centered and scaled.

4. The optimization problem can then be rewritten in matrix
form:

max{αT XT AZγ } subject to

αT XT DxXα ≤ 1, γ T ZT DzZγ ≤ 1, (3)

where Dx and Dz are matrices whose diagonals, respectively,
represent the degrees of the drugs and target proteins. We
substitute identity matrices for XT DxX and ZT DzZ, an oper-
ation that is often applied when the feature vectors are high
dimensional [24, 25]. Thus, the OCCA optimization problem
can then be rewritten as follows:

max{αT XT AZγ } subject to ||α||22 ≤ 1, ||γ ||22 ≤ 1, (4)

where || · ||2 is the L2 norm (the square root of the sum of
squared values in the vector).

5. In OCCA, the weight vectors α and γ are not unique if p

is greater than nx or q is greater than nz. In addition, most
elements in α and γ are nonzero and take highly variable
values. To aid interpretation, it is desirable to limit the number
of nonzero elements in α and γ .

6. By adding L1 penalty terms, sparsity can be induced on α and
γ in the optimization problem:

max{αT XT AZγ } subject to

||α||22 ≤ 1, ||γ ||22 ≤ 1, ||α||1 ≤ c1
√

p, ||γ ||1 ≤ c2
√

q,

(5)

where || · ||1 is the L1 norm (the sum of absolute values in the
vector), and c1 and c2 controlling the sparsity are restricted to
ranges 0 < c1 ≤ 1 and 0 < c2 ≤ 1.

186 Yoshihiro Yamanishi

7. In SCCA, the optimization problem can be regarded as one of
penalized matrix decomposition (PMD) [26], and applying
the PMD algorithm to the matrix Q = XT AZ can yield
solutions. The maximization criterion is expressed as ρ =
αT Qγ and referred to as the singular value.

8. To obtain multiple canonical components, the maximiza-
tion of the above criterion iterated under certain constraints
(deflation). The Q matrix provides the residuals obtained
by subtracting the factors already found from the matrix.
The kth weight vectors αk and γ k for k = 1, 2, . . . , m are
estimated recursively, by setting Q(1) ← Q. Applying the PMD
algorithm to Q(k) yields αk, γ k, and dk. We then set Q(k+1) ←
Q(k) − ρkαkγ

T
k and repeat the above steps for k = 1, 2, . . . , m.

Finally, m pairs of weight vectors α1, . . . , αm and γ 1, . . . , γ m

are obtained.
9. Substructures and domains that are highly weighted in the

weight vectors of the same canonical component are con-
sidered significant in terms of drug–target interactions. The
strength of the association between chemical substructures and
protein domains can be derived as the product between the
weight elements in α and γ within each component.

10. If the weight elements in α and γ are biologically meaningful, it
should be possible to generalize their properties. Given pairing
of drug x with protein z, the potential interaction of drug x
and protein z can be predicted from chemical substructures
present in x and protein domains present in z using weight
vectors α and γ . For any given pairing of drug x and protein z,
a prediction score can then be derived:

s(x, z) =
m∑

k=1

ukρkvk =
m∑

k=1

xT αkρkγ
T
k z, (6)

where m is the number of canonical components and ρk is the
kth singular value. If the score s(x, z) is high, interactions are
predicted to occur.

3.3 Sparsity-
Induced Binary
Classifiers (SIBCs)

1. An alternative approach to predicting drug–target interactions
is the use of supervised binary classification. In this section
we briefly review the use of sparsity-induced binary classifiers
(SIBC) [16].

2. Given a collection of nx ×nz drug-protein pairs (x1, z1),(x1, z2),
. . . , (xnx

, znz
) that are known to interact or not to interact,

a function f (x, z) is derived to predict whether drug x will
interact with protein z. The features that contributed to the
correct prediction are also identified.

Sparse Modeling to Analyze Drug–Target Interaction Networks 187

3. To apply existing binary classifiers, we represent the pairing of
drug x and protein z as a feature vector (x, z), then estimate a
linear function f (x, z) = wT(x, z) whose sign can be used to
predict whether or not the pairing of x and z will interact. The
weight vector w is estimated using learning with interaction
labels.

4. The drug-protein pairing is represented as a feature vector
using the tensor product of two feature vectors. Each
drug is represented as a p-dimensional feature vector,
x = (x1, x2, . . . , xp)T. Each protein is represented as a q-
dimensional feature vector, z = (z1, z2, . . . , zq)

T. A feature
vector of the drug-protein pair is defined by the tensor product
of x and z:

(x, z) = x ⊗ z

= (x1z1, x1z2, . . . , x1zq, . . . , xpz1, xpz2, . . . , xpzq)
T,

where (x, z) is a p × q dimension binary vector, and the
corresponding elements comprise all possible products of the
elements in feature vectors x and z. Since x and z encode
for chemical substructures and protein domains, respectively,
each element in (x, z) represents a paring of the two. Other
possibilities for the design of (x, z) are discussed in Note 4.

5. We apply two binary linear classifiers: logistic regression (LOG)
and linear support vector machine (SVM). Given a set of
drug-protein pairs and labels ((xi , zj), yij), yij ∈ {+1, −1},
LOG and SVM are, respectively, formulated as unconstrained
optimization problems:

min
w

nx∑

i=1

nz∑

j=1

log(1 + exp(−yijwT(xi , zj))), (7)

and

min
w

nx∑

i=1

nz∑

j=1

max{1 − yijwT(xi , zj), 0}. (8)

6. When learning to minimize an objective function, models
typically include regularization to avoid overfitting. A common
approach uses L2-regularization. However, most elements in
the weight vector are then nonzero, making interpretation
from the learned weights difficult. L2-regularized LOG and
SVM are referred to as L2LOG and L2SVM, respectively.

7. An alternative approach uses L1-regularization. This sets the
weights of uninformative features to zero without loss of clas-
sification accuracy, simplifying interpretation from the learned

188 Yoshihiro Yamanishi

weights. To improve interpretability, we therefore use LOG
and SVM with L1-regularization. Optimization of the weight
vector with L1-regularization is performed as follows:

min
w

||w||1 + C

nx∑

i=1

nz∑

j=1

log(1 + exp(−yijwT(xi , zj))), (9)

and

min
w

||w||1 + C

nx∑

i=1

nz∑

j=1

max{1 − yijwT(xi , zj), 0}, (10)

where || · ||1 is the L1 norm (the sum of absolute values in the
vector) and C is a hyper-parameter. L1-regularized LOG and
SVM are referred to as L1LOG and L1SVM, respectively.

8. Highly weighted features in the weight vector w are assumed to
have strong predictive power, and the corresponding combina-
tions of substructures and domains to be promising candidates
for drug–target interaction.

3.4 An
Application

1. We applied the SCCA and SIBC methods to the drug–target
interaction data. The relationship between SCCA and SIBC is
discussed in Note 5.

2. In the application of SCCA, we compared with OCCA. We
extracted 50 canonical components (CCs), each of which
comprised a limited number of chemical substructures and
protein domains. The resulting weight vectors for the drug
substructures and protein domains were then examined. The
detailed results can be found in the original paper [15].

3. Figures 2 and 3 show the index-plots of the weight vectors
derived by applying OCCA and SCCA, respectively. Owing
to space limitation, only the first 3 canonical components
are shown. Almost all the elements in the OCCA weight

Component 1 Component 1

Component 2 Component 2

Component 3 Component 3

Substructure index Domain index

Substructure index Domain index

Substructure index

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

Domain index

Fig. 2 Index-plot of weight vectors in OCCA for drug substructures (left) and protein domains (right)

Sparse Modeling to Analyze Drug–Target Interaction Networks 189

Component

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

W
ei

gh
t

1 Component 1

Component 2 Component 2

Component 3 Component 3

Substructure index Domain index

Substructure index Domain index

Substructure index Domain index

Fig. 3 Index-plot of weight vectors in SCCA for drug substructures (left) and protein domains (right)

vectors appeared to have nonzero values and a high degree of
variation, whereas most of those in the SCCA weight vectors
had zero values in each component. This suggested that SCCA
selected a very small number of features. In practice, results are
difficult to interpret when the number of weighted elements
is very large, as was the case when using OCCA. The results
suggested that SCCA was more selective when identifying drug
substructures and protein domains.

4. In the application of SIBC, we tested L1LOG and L1SVM,
and compared with L2LOG and L2SVM. In each case, the
positively weighted features were extracted and the parameters
(including regularization parameters, sparsity parameters, and
number of components) were optimized by cross-validation.
The relevance of connections between chemical substructures
and protein domains was evaluated from the corresponding
weightings in the classifier. The detailed results were reported
in an earlier paper [16].

5. Figure 4 compares the number of features extracted by the
four methods. L1LOG and L1SVM extracted a much more
limited number of features than L2LOG and L2SVM. This
was attributed to the sparsity that resulted from applying the
L1 penalty rather than the L2 penalty, which reduced the
number of features to be examined. This suggests that the
L1-regularized classifier approach is preferred when applying
biological interpretation to the analysis of extracted features.

4 Notes

1. Feature extraction methods can be applied when the drug
molecules and target proteins are represented by high-
dimensional descriptors (in this study, chemical substructures
and protein domains). However, the performance depends
heavily on the definition of the descriptors, and these methods
are unable to extract features that are not listed in the

190 Yoshihiro Yamanishi

L1LOG
2e

+0
3

5e
+0

3
2e

+0
4

N
um

be
r o

f f
ea

tu
re

s
(lo

g
sc

al
e)

5e
+0

4
2e

+0
5

5e
+0

5
L1SVM L2LOG L2LOG All possible

Fig. 4 Comparison of the number of extracted features between different
methods

predefined descriptors. The creation of more appropriate
descriptors may improve generalization. For example, it would
be interesting to investigate the effect of incorporating prior
information on pharmacophores [27] and biding pockets
[28, 29].

2. A promising way of designing drug descriptors would be to use
phenotypic data, such as known human side-effects [30, 31].
However, at present detailed side-effect information is available
only from drug package inserts or clinical reports, so that this
approach can be applied only to commercially marketed drugs.
To address this, approaches have been developed that predict
the phenotypic profile of a compound from the chemical
structure [32, 33]. Another promising approach to the devel-
opment of drug descriptors uses drug-induced gene expression
profiles observed from chemical perturbations in human cell
lines [34–38].

3. The SCCA approach presented in this chapter is a sparse
version of canonical correspondence analysis, which is used to
handle two different sets of data with their co-occurrence infor-
mation on heterogeneous objects. The criterion for canonical
correspondence analysis is similar to that of canonical correlation
analysis [39], so the former can be considered a variant of the
latter. There are two main differences between the two meth-
ods: (1) in canonical correlation analysis, the objects are the
same in the two datasets, whereas in canonical correspondence

Sparse Modeling to Analyze Drug–Target Interaction Networks 191

analysis, the objects are different, and (2) canonical correlation
analysis cannot handle co-occurrence information about the
heterogeneous objects.

4. When the feature vector (x, z) in SIBC is a sparse binary
vector, the optimization problem can be solved with high
efficiency [40]. The use of b-bit hashing techniques has been
proposed as a way of transforming high-dimensional feature
vectors into lower dimensions while preserving the essential
information [17]. Combining L1SVM with b-bit hashing
makes it possible to learn a predictive model from massive
datasets comprising billions of sample points.

5. SCCA and SIBC are similar in that sparsity is induced into
the predictive models. Since SCCA introduces sparsity into
each canonical component, the extracted features (in this
study, the chemical substructures and protein domains) differ
from canonical component to canonical component. This is
beneficial when the goal is to associate a set of chemical
substructures with a set of protein domains in a modular
manner. In contrast, SIBC induces sparsity into a pairwise
statistical model. When many similar substructure–domain
pairs are present, SIBC tends to extract a smaller number of
representative substructure–domain pairs.

Acknowledgements

This work is supported by JST PRESTO Grant Number
JPMJPR15D8.

References

1. Butina D, Segall M, Frankcombe K (2002)
Predicting ADME properties in silico: methods
and models. Drug Discov Today 7:S83–S88

2. Byvatov E, Fechner U, Sadowski J, Schnei-
der G (2003) Comparison of support vector
machine and artificial neural network systems
for drug/nondrug classification. J Chem Inf
Comput Sci 43:1882–1889

3. Rarey M, Kramer B, Lengauer T, Klebe G
(1996) A fast flexible docking method using an
incremental construction algorithm. J Mol Biol
261:470–489

4. Kanehisa M, Goto S, Hattori M, Aoki-
Kinoshita K, Itoh M, Kawashima S, Katayama
T, Araki M, Hirakawa M (2006) From
genomics to chemical genomics: new develop-
ments in KEGG. Nucleic Acids Res. 34:D354–
357

5. Stockwell B (2000) Chemical genetics: ligand-
based discovery of gene function. Nat Rev
Genet 1:116–125

6. Dobson C (2004) Chemical space and biology.
Nature 432:824–828

7. Erhan D, LÕheureux P-J, Yue SY, Bengio Y
(2006) Collaborative filtering on a family of
biological targets. J Chem Inf Model 46:626–
635

8. Nagamine N, Sakakibara Y (2007) Statisti-
cal prediction of protein–chemical interactions
based on chemical structure and mass spec-
trometry data. Bioinformatics 23:2004–2012

9. Yamanishi Y, Araki M, Gutteridge A, Honda W,
Kanehisa M (2008) Prediction of drug-target
interaction networks from the integration of
chemical and genomic spaces. Bioinformatics
24:i232–i240

192 Yoshihiro Yamanishi

10. Faulon J, Misra M, Martin S, Sale K, Sapra R
(2008) Genome scale enzyme–metabolite and
drug–target interaction predictions using the
signature molecular descriptor. Bioinformatics
24:225–233

11. Jacob L, Vert J-P (2008) Protein-ligand inter-
action prediction: an improved chemogenomics
approach. Bioinformatics 24:2149–2156

12. Yamanishi Y (2009) Supervised bipartite graph
inference. In: Koller D, Schuurmans D, Bengio
Y, Bottou L (eds) Advances in neural infor-
mation processing systems, vol 21. MIT Press,
Cambridge, pp 1841–1848

13. Bleakley K, Yamanishi Y (2009) Supervised pre-
diction of drug-target interactions using bipar-
tite local models. Bioinformatics 25:2397–
2403

14. Takigawa I, Tsuda K, Mamitsuka H (2011)
Mining significant substructure pairs for inter-
preting polypharmacology in drug-target net-
work. PloS One 6:e16999

15. Yamanishi Y, Pauwels E, Saigo H, Stoven
V (2011) Extracting sets of chemical sub-
structures and protein domains governing
drug-target interactions. J Chem Inf Model
51:1183–1194

16. Tabei Y, Pauwels E, Stoven V, Takemoto K,
Yamanishi Y (2012) Identification of chemoge-
nomic features from drug-target interaction
networks using interpretable classifiers. Bioin-
formatics 28:i487–i494

17. Tabei Y, Yamanishi Y (2013) Scalable prediction
of compound-protein interactions using min-
wise hashing. BMC Syst Biol 7:S3

18. Iwata H, Mizutani S, Tabei Y, Kotera M,
Goto S, Yamanishi Y (2013) Inferring protein
domains associated with drug side effects based
on drug-target interaction network. BMC Syst
Biol 7:S18

19. Wishart D, Knox C, Guo A, Shrivastava S,
Hassanali M, Stothard P, Chang Z, Woolsey
J (2006) Drugbank: a comprehensive resource
for in silico drug discovery and exploration.
Nucleic Acids Res 34:D668–D672

20. The Uniprot Consortium (2010) The universal
protein resource (UniProt) in 2010. Nucleic
Acids Res 38:D142–D148

21. Finn R, Tate J, Mistry J, Coggill P, Sammut
J, Hotz H, Ceric G, Forslund K, Eddy S,
Sonnhammer E, Bateman A (2008) The Pfam
protein families database. Nucleic Acids Res
36:D281–D288

22. Wang Y, Xiao J, Suzek T, Zhang J, Wang J,
Bryant S (2009) Pubchem: a public informa-
tion system for analyzing bioactivities of small
molecules. Nucleic Acids Res 37:D623–D633

23. Greenacre M (1984) Theory and applications
of correspondence analysis. Academic Press,
New York

24. Dudoit S, Fridlyand J, Speed T (2002) Com-
parison of discrimination methods for the clas-
sification of tumors using gene expression data.
J Am Stat Assoc 97:77–87

25. Tibshirani R, Hastie T, Narasimhan B, Chu G
(2003) Class prediction by nearest shrunken
centroids, with applications to DNA microar-
rays. Stat Sci 18:104–117

26. Witten D, Tibshirani R, Hastie T (2009)
A penalized matrix decomposition, with
applications to sparse principal components
and canonical correlation analysis. Biostatistics
10:515–534

27. Mahe P, Ralaivola L, Stoven V, Vert J (2006)
The pharmacophore kernel for virtual screen-
ing with support vector machines. J Chem Inf
Model 46:2003–2014

28. Kratochwil N, Malherbe P, Lindemann L, Ebel-
ing M, Hoener M, Muhlemann A, Porter R,
Stahl M, Gerber P (2005) An automated system
for the analysis of g protein-coupled recep-
tor transmembrane binding pockets: Align-
ment, receptor-based pharmacophores, and
their application. J Chem Inf Model 45:1324–
1336

29. Jacob L, Hoffmann B, Stoven V, Vert J-P
(2009) Virtual screening of GPCRs: an in silico
chemogenomics approach. BMC Bioinf 9:363

30. Campillos M, Kuhn M, Gavin A, Jensen L, Bork
P (2008) Drug target identification using side-
effect similarity. Science 321(5886):263–266

31. Takarabe M, Kotera M, Nishimura Y, Goto
S, Yamanishi Y (2012) Drug target prediction
using adverse event report systems: a pharma-
cogenomic approach. Bioinformatics 28:i611–
i618

32. Yamanishi Y, Kotera M, Kanehisa M, Goto
S (2010) Drug-target interaction prediction
from chemical, genomic and pharmacological
data in an integrated framework. Bioinformatics
26:i246–i254

33. Atias N, Sharan R (2011) An algorithmic frame-
work for predicting side-effects of drugs. J
Comput Biol 18:207–218

Sparse Modeling to Analyze Drug–Target Interaction Networks 193

34. Iorio F, Tagliaferri R, di Bernardo D (2009)
Identifying network of drug mode of action
by gene expression profiling. J Comput Biol
16:241–251

35. Iorio F, Bosotti R, Scacheri E, Belcastro V,
Mithbaokar P, Ferriero, R, Murino L, Taglia-
ferri R, Brunetti-Pierri N, Isacchi A et al (2010)
Discovery of drug mode of action and drug
repositioning from transcriptional responses.
Proc Natl Acad Sci 107:14621–14626

36. Wang K, Sun J, Zhou S, Wan C, Qin S, Li
C, He L, Yang L (2013) Prediction of drug-
target interactions for drug repositioning only
based on genomic expression similarity. PLoS
Comput Biol 9:e1003315

37. Hizukuri Y, Sawada R, Yamanishi Y (2015) Pre-
dicting target proteins for drug candidate com-
pounds based on drug-induced gene expression
data in a chemical structure-independent man-
ner. BMC Med Genomics 8:1

38. Iwata M, Sawada R, Kotera M, Yamanishi Y
(2017) Elucidating the modes of action of
bioactive compounds by large-scale compound-
induced transcriptomics: toward drug discovery
and repositioning. Sci Rep 7:40164

39. Hotelling, H (1936) Relation between two sets
of variates. Biometrika 28:322–277

40. Fan RE, Chang KW, Hsieh CJ, Wang X, Lin CJ
(2008) LIBLINEAR: a library for large linear
classification. J Mach Learn Res 9:1871–1874

Chapter 14

DrugE-Rank: Predicting Drug-Target Interactions by Learning
to Rank

Jieyao Deng, Qingjun Yuan, Hiroshi Mamitsuka, and Shanfeng Zhu

Abstract

Identifying drug-target interactions is crucial for the success of drug discovery. Approaches based on
machine learning for this problem can be divided into two types: feature-based and similarity-based meth-
ods. By utilizing the “Learning to rank” framework, we propose a new method, DrugE-Rank, to combine
these two different types of methods for improving the prediction performance of new candidate drugs
and targets. DrugE-Rank is available at http://datamining-iip.fudan.edu.cn/service/DrugE-Rank/.

Key words DrugE-Rank, Learning to rank, Drug discovery

1 Introduction

Identifying drug-target interactions is crucial for the success of
drug discovery. It can facilitate the understanding of drug side
effect [1–3], disease pathology, as well as the drug action mech-
anism. Compared with using biochemical experiments to identify
drug-target interaction, computational approaches are more effi-
cient and economical. Approaches based on machine learning for
this problem can be divided into two types: feature-based and
similarity-based methods [4–6]. By utilizing the ‘Learning to rank’
(LTR) [7, 8] framework, we propose a new method, DrugE-
Rank [9], to combine these two different types of methods for
improving the prediction performance of new candidate drugs and
targets.

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_14, © Springer Science+Business Media, LLC, part of Springer Nature 2018

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_14&domain=pdf
http://datamining-iip.fudan.edu.cn/service/DrugE-Rank
https://doi.org/10.1007/978-1-4939-8561-6_14

196 Jieyao Deng et al.

We are interested in the problem of predicting drug-target
interactions for new drugs or new targets. This problem is espe-
cially challenging, due to three main reasons. Firstly, since there
are no known interactions for new drug or target, the training
of prediction models is difficult. Secondly, existing computational
methods based on LTR do not consider the connections among
different drugs or targets very well. Thirdly, the prediction of
drug-target interaction is a challenging multi-label learning prob-
lem, where a new target (or drug) has multiple interacting drugs
(or targets).

Compared with previous computational approaches, DrugE-
Rank has multiple advantages. Firstly, by utilizing the LTR
paradigm, DrugE-Rank can solve this multi-label learning problem
naturally and provide the most powerful performance. Secondly,
DrugE-Rank integrates diverse cutting-edge techniques in the
framework of LTR, which include both similarity-based and
feature-based methods. Thirdly, DrugE-Rank only considers
the top drug (or target) candidates recommended by each
component method, which can greatly reduce the computational
burden.

2 Materials

The performance of DrugE-Rank was examined by using Drug-
Bank [10], a manually annotated drug-target interaction database.
We carried out three rounds of experiments: (1) cross validation
over DrugBank data with FDA-approved drugs before March
2014, (2) independent test over DrugBank data with new targets
and FDA-approved drugs after March 2014, and (3) indepen-
dent test over FDA experimental drugs. The experimental results
demonstrate that DrugE-Rank outperformed all competing meth-
ods, being statistically significant. The improvement is especially
promising for new drugs. Finally, we train DrugE-Rank with
DrugBank data by the end of 2015. It consists of 1324 human
protein targets, 1242 FDA-approved drugs, and altogether 5484
known interactions.

DrugE-Rank 197

3 Methods

Six cutting-edge similarity-based methods are used in DrugE-
Rank as component methods in the LTR framework: bipartite
local model with support vector classification (BLM-svc) [11],
bipartite local model with support vector regression (BLMsvr), k-
nearest neighbor (k-NN) [12], weighted nearest neighbor-based
Gaussian Interaction Profile classifier (WNN-GIP) [13], Laplacian
regularized least squares (LapRLS) [14], and network-based Lapla-
cian regularized least squares(NetLapRLS). In addition, we extract
drug features using RDKit (see Note 1) and target features from
PROFEAT [15].

4 Usage

4.1 New Drug Given a new drug, DrugE-Rank returns the top 20 targets as the
predicted result. The input interface is shown in Fig. 1.

1. Choose input format. You can input the drug profile by
DrugBank ID, SMILES or MOL Format Text. An example
of input is shown in Fig. 2.

2. Click the “Send” button. Click the button at the bottom of
the page and your task will be in processing. The process takes
about 10 min, and the server will return the top 20 predictions
for each method (DrugE-Rank and six similarity-based meth-
ods). The result can help you to prioritize the most promising
targets (Fig. 3).

4.2 New Target Given a new target, DrugE-Rank returns the top 20 drugs as the
predicted result. The input interface is shown in Fig 4.

1. Choose input format. You can input the target profile by
UniProt ID or amino acid sequence (FASTA format). An
example of input is shown in Fig. 5.

2. Click the “Send” button. Click the button at the bottom of
the page and your task will be in processing. The process takes
around 10 min, and the server will return the top 20 predic-
tions for each method (DrugE-Rank and six similarity-based
methods). The result may help you to prioritize the most
promising drugs (Fig. 6).

198 Jieyao Deng et al.

Fig. 1 Input interface for new drug

Fig. 2 Input example for new drug

DrugE-Rank 199

Fig. 3 Output example for new drug

200 Jieyao Deng et al.

Fig. 4 Input interface for new target

Fig. 5 Input example for new target

DrugE-Rank 201

Fig. 6 Output example for new target

202 Jieyao Deng et al.

5 Notes

1. http://www.rdkit.org/.

Acknowledgments

This work has been partially supported by National Natural Science
Foundation of China (Grant Nos: 61572139), MEXT KAKENHI
#16H02868, and FiDiPro by Tekes.

References

1. Keiser MJ, Setola V, Irwin JJ et al (2009)
Predicting new molecular targets for known
drugs. Nature 462(7270):175–181

2. Lounkine E, Keiser MJ, Whitebread S et al
(2012) Large-scale prediction and testing of
drug activity on side-effect targets. Nature
486(7403):361–367

3. Nunez S, Venhorst J, Kruse CG (2012) Target-
drug interactions: first principles and their
application to drug discovery. Drug Discov
Today 17:10–22

4. Ding H, Takigawa I, Mamitsuka H,
Zhu S (2014) Similarity-based machine
learning methods for predicting drug–target
interactions: a brief review. Brief Bioinform
15(5):734–747

5. Zheng X, Ding H, Mamitsuka H, Zhu S
(2013) Collaborative matrix factorization with
multiple similarities for predicting drug-target
interactions. In: Proceedings of the 19th ACM
SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pp
1025–1033

6. Takigawa I, Mamitsuka H (2013) Graph min-
ing: procedure, application to drug discovery
and recent advance. Drug Discov Today 18(1–
2):50–57

7. Liu T (2009) Learning to rank for informa-
tion retrieval. Found Trends Inf Retr 3(3):
225–331

8. Li H (2011) A short introduction to learning
to rank. IEICE Transactions 94-D(10):1854–
1862

9. Yuan Q, Gao J, Wu D et al (2016) DrugE-
Rank: improving drug-target interaction
prediction of new candidate drugs or targets
by ensemble learning to rank. Bioinformatics
32(12):i18–i27

10. Law V, Knox C, Djoumbou Y, Jewison T, Guo
AC, Liu Y, Maciejewski A, Arndt D, Wilson M,
Neveu V et al (2014) Drugbank 4.0: shedding
new light on drug metabolism. Nucleic Acids
Res 42(D1):D1091–D1097

11. Bleakley K, Yamanishi Y (2009) Supervised
prediction of drug-target interactions using
bipartite local models. Bioinformatics
25(18):2397–2403

12. Van LT, Marchiori E (2013) Predicting drug-
target interactions for new drug compounds
using a weighted nearest neighbor profile.
PLoS One 8(6):e66952

13. Van LT, Nabuurs SB, Marchiori E
(2011) Gaussian interaction profile kernels
for predicting drug-target interaction.
Bioinformatics 27(21):3036–3043

14. Xia Z, Zhou X, Sun Y, Wu L (2009) Semi-
supervised drug-protein interaction prediction
from heterogeneous spaces. In: The Third
International Symposium on Optimization and
Systems Biology, vol 11. pp 123–131

15. Rao H, Zhu F, Yang G, Li Z, Chen Y (2011)
Update of profeat: a web server for computing
structural and physicochemical features of pro-
teins and peptides from amino acid sequence.
Nucleic Acids Res 39(Suppl 2):W385–W390

http://www.rdkit.org

Chapter 15

MeSHLabeler and DeepMeSH: Recent Progress
in Large-Scale MeSH Indexing

Shengwen Peng, Hiroshi Mamitsuka, and Shanfeng Zhu

Abstract

The US National Library of Medicine (NLM) uses the Medical Subject Headings (MeSH) (see Note 1) to
index almost all 24 million citations in MEDLINE, which greatly facilitates the application of biomedical
information retrieval and text mining. Large-scale automatic MeSH indexing has two challenging aspects:
the MeSH side and citation side. For the MeSH side, each citation is annotated by only 12 (on average)
out of all 28,000 MeSH terms. For the citation side, all existing methods, including Medical Text Indexer
(MTI) by NLM, deal with text by bag-of-words, which cannot capture semantic and context-dependent
information well. To solve these two challenges, we developed the MeSHLabeler and DeepMeSH. By
utilizing “learning to rank” (LTR) framework, MeSHLabeler integrates multiple types of information to
solve the challenge in the MeSH side, while DeepMeSH integrates deep semantic representation to solve
the challenge in the citation side. MeSHLabeler achieved the first place in both BioASQ2 and BioASQ3,
and DeepMeSH achieved the first place in both BioASQ4 and BioASQ5 challenges. DeepMeSH is available
at http://datamining-iip.fudan.edu.cn/deepmesh.

Key words MeSH indexing, Text categorization, Multi-label classification, Medical subject headings,
MEDLINE, Machine learning

1 Introduction

MEDLINE (see Note 2) is the largest biomedical literature
database in the world, which contains more than 24 million
citations. MeSH terms are used to index almost all MEDLINE
citations [1], which is crucial in biomedical text mining and
information retrieval [2–8]. The NLM annotators who are
responsible for annotating the MeSHs need to review the full
text of a citation, which costs lots of time and money. For the
year 2016, there were 869,666 new citations in MEDLINE (see
Note 3), and the average cost per citation was about $9.4 [9].
As of April 2016, there were 127 staff members in NLM who
are responsible for annotating the most relevant MeSH terms to
the MEDLINE citations [10]. As time goes on, the rapid increase

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_15, © Springer Science+Business Media, LLC, part of Springer Nature 2018

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_15&domain=pdf
http://datamining-iip.fudan.edu.cn/deepmesh
https://doi.org/10.1007/978-1-4939-8561-6_15

204 Shengwen Peng et al.

of the MEDLINE citation poses great challenges for manual
annotations. A fast and accurate automated MeSH indexing system
is imperative to improve the indexing efficiency and reduce the
cost.

NLM has developed an automated MeSH indexing system,
MTI [1, 11, 12], to facilitate the annotation of MeSH. MTI
mainly consists of two parts: MMI (MetaMap Indexing) [13]
and PRC (PubMed Related Citations) [14]. MMI extracts the
biomedical concept from the title and abstract and then maps
it to the corresponding MeSH. Moreover, PRC tries to use the
improved K-nearest neighbor (KNN) algorithm to find the most
similar MEDLINE citations and then extracts MeSHs from these
similar citations. The results of PRC and MMI were combined
into a preliminary recommendation. After some processing (e.g.,
the application of the index rules), MTI generate the final MeSH
recommended list to the NLM annotators.

Large-scale MeSH indexing mainly has two aspects of chal-
lenges from the MeSH side and the citation side, respectively. In
the MeSH side, the difference between the distributions of differ-
ent MeSHs is particularly large. For example, among all 28,000
MeSH terms, the most common MeSH, “Humans,” appears more
than 8 million times in the MEDLINE, while a rare MeSH, such
as “Pandanaceae,” only appears 31 times. In addition, the number
of MeSHs annotated for each citation varies greatly, which might
be less than 5 MeSHs or more than 30 MeSHs. In addition, in the
side of citations, the “Bag of Words” method cannot effectively
capture the complex semantics of biomedical documents because
of the large number of concepts and abbreviations in biomedical
literature. In many cases, similar concepts can be represented by
different words, and the same words can express a completely
different meaning from the context.

In order to promote the development of semantic indexing
and automatic question answering systems in the biomedical field,
BioASQ [15–17], a challenge on large-scale biomedical semantic
indexing and question answering, held an international competi-
tion from 2013 to 2017. There have been many effective systems
that have emerged through the platform, such as MetaLabeler [18]
and MeSH Now [19]. To improve the performance of automatic
MeSH indexing system, we developed two systems, MeSHLa-
beler [20] and DeepMeSH [21], which solve the challenges in
the MeSH side and citation side, respectively. MeSHLabeler use
“learning to rank” framework to incorporate multiple evidences
to rank the MeSHs, while DeepMeSH integrates a new semantic
representation to represent citations. MeSHLabeler achieved the
first place in both BioASQ2 and BioASQ3, and DeepMeSH
achieved the first place in both BioASQ4 and BioASQ5 challenges
[22].

MeSHLabeler and DeepMeSH 205

2 Materials

We use 2016 MeSH, containing 27,883 unique MeSH terms.
Most of training data come from 2016 MEDLINE/PubMed
baseline database downloaded from the NCBI website. Another
part of data is downloaded from BioASQ 2015 challenge Task 3a,
with 49,774 indexed. The text of all these citations only contains
abstract, article title, and journal title. DeepMeSH consists of two
components, MeSHRanker and MeSHNumber. Given a target
citation, MeSHRanker returns a ranked list of candidate MeSH
terms, while MeSHNumber predicts the number of associated
MeSH terms. For the 49,774 citations from BioASQ 2015, we
randomly assign them to three sets: MeSHRanker training set
(with 23,774 citations), MeSHNumber training set (with 20,000
citations), and local test set (with 6000 citations).

Our system was mainly written by C++. It also used many
open source tools to implement the whole flow.

1. BioTokenizer was used to tokenize and stem raw text.
2. LIBLINEAR was used to implement logistic regression and

linear SVM.
3. XGBoost was used to implement learning to rank framework.

Our server has 4 Intel XEON E5–4650 2.7GHzs CPUs and
128G memory. It costs around 7 days to train 27,000 binary
classifiers with logistic regression or linear svm. Predicting 10,000
citations costs around 3 h.

3 Methods

DeepMeSH is the “state of the art” of the MeSH indexing
system. It improves the MeSH indexing accuracy by incorpo-
rating deep semantic representation to MeSHLabeler. The deep
semantic representation, D2V-TFIDF, combines the advantages
of the D2V (document vector) and TFIDF (term frequency with
inverse document frequency). According to our experiments, D2V-
TFIDF represents citation texts better than both D2V and TFIDF.
It is more powerful to find similar citations, so we use this
representation to solve the challenge on the citation side.

MeSHLabeler is the last generation of MeSH indexing system,
which uses the “learning to rank” framework to incorporate
multiple evidence to solve the challenge on the MeSH side. It has
two components: MeSHRanker and MeSHNumber. MeSHRanker
is used to rank the candidate MeSH terms for each target citation.
On the other hand, MeSHNumber is used to predict the number
of associated MeSH terms for the target citation. MeSHRanker
incorporates five different types of evidence to rank the MeSHs,

206 Shengwen Peng et al.

which includes global evidence, local evidence, MeSH dependency,
pattern matching, and MTI.

• Global evidence: We train a binary classifier for each MeSH
with the entire MEDLINE. Since each MeSH is trained
independently, the scores returned by the different classifiers
are theoretically incomparable. MeSHLabeler proposed a nor-
malized method to deal with the score comparisons between
different models, which significantly improves the prediction
accuracy. Because each MeSH binary classifier is trained with
the entire MEDLINE, we call this part of the evidence as
global evidence.

• Local evidence: For a target citation, we can score the can-
didate MeSHs through counting the MeSHs indexed by its
similar citations.

• MeSH dependency: It is a unique feature of MeSHLabeler that
effectively considers the relevance of the MeSH-MeSH terms.
For infrequent MeSH terms, this information can effectively
improve the accuracy of labeling. Since the number of MeSH-
MeSH combinations was very large, none of the previous
studies considered MeSH dependency.

• Patten matching: We directly use the string matching method
to find the MeSHs or their synonyms in the title or abstract.

• MTI: MTI considers not only pattern matching and local
evidence but also the index rules with domain knowledge. We
integrate the results from MTI.

4 Usage

The input interface is shown in Fig. 1.

1. Select a file. This is to upload the citations for MeSH indexing.
Two file extensions, “.txt” and “.json,” are supported. If the file
extension is “.txt,” the file must contain the PubMed IDs (pmid)
of all target citations, and each line contains a pmid. If the file
extension is “.json,” the file should contain all raw texts of target
citations. The text contains abstract and title. Note that each
submit file must contain at least 100 instances. Sample input
was shown as Fig. 2

2. Input an email address. Input your email address to receive the
prediction result. The email address will be used to receive a
process ID, prediction result, or some information if any error
occurs.

3. Upload the file. Click the submit button, the file will be
uploaded. Once uploaded successfully, you will receive a process

MeSHLabeler and DeepMeSH 207

Fig. 1 The input interface of DeepMeSH

Fig. 2 A sample input of DeepMeSH

208 Shengwen Peng et al.

Fig. 3 The process ID check interface of DeepMeSH

ID in your email. As shown in Fig. 3, you can use the process
ID to check the prediction status.

For each successful submission, we will output a json file.
For an unindexed pmid, we output the MeSHs recommended by
DeepMeSH, and the answer_type has a value of “predicted.” For
an indexed pmid, we output the MeSHs indexed by PubMed, and
the answer_type has a value of “annotated.” If a pmid cannot be
found in PubMed, the result will be empty, and the answer_type
has a value of “not_found.” Note that if the input file is a “.json”
file which contains only texts, the output pmid is the index of the
text in the file (starts from 0).

A sample output is shown as follows:
{“documents”: [

{“labels”:[“D006801”,“D055815”],“pmid”:24639323,“answer_type”:“predicted
”},
{“labels”:[“D000293”],“pmid”:24687846,“answer_type”:“predicted”},
{“labels”:[“D005260”,“D058006”],“pmid”:27059885,“answer_type”:“annotate}
d”}, {“labels”:[],“pmid”:32131231, “answer_type”:“not_found”}]}

5 Notes

1. https://www.nlm.nih.gov/pubs/factsheets/mesh.html
2. https://www.nlm.nih.gov/pubs/factsheets/medline.html
3. http://www.nlm.nih.gov/bsd/bsd_key.html

https://www.nlm.nih.gov/pubs/factsheets/mesh.html
https://www.nlm.nih.gov/pubs/factsheets/medline.html
http://www.nlm.nih.gov/bsd/bsd_key.html

MeSHLabeler and DeepMeSH 209

Acknowledgments

This work has been partially supported by National Natural Science
Foundation of China (Grant Nos: 61572139), MEXT KAKENHI
#16H02868 and FiDiPro by Tekes.

References

1. Aronson AR, Mork JG, Gay CW, Humphrey
SM, Rogers WJ (2004) The NLM indexing
initiativeś medical text indexer. Stud Health
Technol Inform 107(Pt 1):268–272

2. Stokes N, Li Y, Cavedon L, Zobel J (2010)
Exploring criteria for successful query expan-
sion in the genomic domain. Inf Retr 12:17–50

3. Lu Z, Kim W, Wilbur WJ (2010) Evaluation of
query expansion using MeSH in PubMed. Inf
Retr 12:69–80

4. Zhu S, Takigawa I, Zeng J, Mamitsuka H
(2009) Field independent probabilistic model
for clustering multi-field documents. Inf Pro-
cess Manage 45(5):555–570

5. Zhu S, Zeng J, Mamitsuka H (2009) Enhanc-
ing MEDLINE document clustering by incor-
porating MeSH semantic similarity. Bioinfor-
matics 25(15):1944–1951

6. Gu J, Feng W, Zeng J, Mamitsuka H, Zhu
S (2013) Efficient semisupervised MEDLINE
document clustering with MeSH-semantic and
global-content constraints. IEEE Trans Cyber-
netics 43(4):1265–1276

7. Zhou J, Shui Y, Peng S, Li X, Mamitsuka H,
Zhu S (2015) MeSHSim: An R/Bioconductor
package for measuring semantic similarity over
MeSH headings and MEDLINE documents. J
Bioinform Comput Biol 13(6):1542002

8. Huang X, Zheng X, Yuan W, Wang F, Zhu
S (2011) Enhanced clustering of biomedical
documents using ensemble non-negative matrix
factorization. Inform Sci 181(11):2293–2302

9. Mork JG, Jimeno-Yepes A, Aronson AR
(2013) The NLM medical text indexer system
for indexing biomedical literature. BioASQ@
CLEF

10. Demner-Fushman D, Mork JG (2016) A report
to the board of Scientific Counselors, April
2016

11. Mork JG, Demner-Fushman D, Schmidt S,
Aronson AR (2014) Recent Enhancements to
the NLM Medical Text Indexer. CLEF (Work-
ing Notes), pp 1328–1336

12. Nelson SJ, Schopen M, Savage AG, Schulman
JL, Arluk N (2004) The MeSH translation
maintenance system: structure, interface design,
and implementation. Medinfo 11:67–69

13. Aronson AR, Lang FM (2004) An overview
of MetaMap: historical perspective and recent
advances. J Am Med Inform Assoc 17:229–236

14. Lin J, Wilbur WJ (2007) PubMed related
articles: a probabilistic topic-based model for
content similarity. BMC Bioinformatics 8:423

15. Partalas I, Gaussier É, Ngomo ACN et al.
(2013) Results of the first BioASQ Workshop.
BioASQ@ CLEF

16. Tsatsaronis G et al (2015) An overview of
the BIOASQ large-scale biomedical semantic
indexing and question answering competition.
BMC Bioinformatics 16:138

17. Balikas G, Partalas I, Ngomo AN, Krithara A,
Paliouras G (2014) Results of the BioASQ track
of the question answering lab at CLEF 2014.
CLEF (Working Notes), pp 1181–1193

18. Tsoumakas G, Laliotis M, Markantonatos
N, Vlahavas IP (2013) Large-scale semantic
indexing of biomedical publications. BioASQ@
CLEF

19. Mao Y, Lu Z (2013) NCBI at the 2013
BioASQ challenge task: learning to rank for
automatic MeSH indexing. BioASQ@ CLEF

20. Liu K, Peng S, Wu J, Zhai C, Mamitsuka
H, Zhu S (2015) MeSHLabeler: improving
the accuracy of large-scale MeSH indexing
by integrating diverse evidence. Bioinformatics
12:i339–i347

21. Peng S, You R, Wang H, Zhai C, Mamitsuka
H, Zhu S (2016) DeepMeSH: deep semantic
representation for improving large-scale MeSH
indexing. Bioinformatics 32(12):i70–i79

22. Peng S, You R, Xie Z, Wang B, Zhang Y,
Zhu S (2015) The Fudan participation in the
2015 BioASQ challenge: large-scale biomedi-
cal semantic indexing and question answering.
CLEF (Working Notes)

Chapter 16

Disease Gene Classification with Metagraph Representations

Sezin Kircali Ata, Yuan Fang, Min Wu, Xiao-Li Li, and Xiaokui Xiao

Abstract

This chapter is based on exploiting the network-based representations of proteins, metagraphs, in protein-
protein interaction network to identify candidate disease-causing proteins. Protein-protein interaction
(PPI) networks are effective tools in studying the functional roles of proteins in the development of various
diseases. However, they are insufficient without the support of additional biological knowledge for proteins
such as their molecular functions and biological processes. To enhance PPI networks, we utilize biological
properties of individual proteins as well. More specifically, we integrate keywords from UniProt database
describing protein properties into the PPI network and construct a novel heterogeneous PPI-Keyword
(PPIK) network consisting of both proteins and keywords. As proteins with similar functional duties or
involving in the same metabolic pathway tend to have similar topological characteristics, we propose to
represent them with metagraphs. Compared to the traditional network motif or subgraph, a metagraph can
capture the topological arrangements through not only the protein-protein interactions but also protein-
keyword associations. We feed those novel metagraph representations into classifiers for disease protein
prediction and conduct our experiments on three different PPI databases. They show that the proposed
method consistently increases disease protein prediction performance across various classifiers, by 15.3% in
AUC on average. It outperforms the diffusion-based (e.g., RWR) and the module-based baselines by 13.8–
32.9% in overall disease protein prediction. Breast cancer protein prediction outperforms RWR, PRINCE,
and the module-based baselines by 6.6–14.2%. Finally, our predictions also exhibit better correlations with
literature findings from PubMed database.

Key words Protein-protein interaction, UniProt keywords, Metagraph, Protein representations,
Disease protein prediction

1 Introduction

Disease-causing genes and their protein products play a crucial
role in the diagnosis and treatment of serious diseases such as
cancer and diabetes. In addition to various efforts in identifying the
functions of genes and proteins [1–4], protein-protein interaction
(PPI) networks [5–8] have been widely exploited to reveal the
proteins with similar functional duties or involving in the same
metabolic pathway. Many studies validate that the position of a
protein in a PPI network is not random [9–11]. Instead, proteins

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_16, © Springer Science+Business Media, LLC, part of Springer Nature 2018

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_16&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_16

212 Sezin Kircali Ata et al.

with the same phenotype or function tend to have common
topological characteristics (e.g., degree, coreness, and closeness)
and tend to be involved in the same complexes [12, 13]. By
means of such characteristics, predicting the associations between
proteins and diseases is possible. Network-based approaches in
disease protein prediction (see Note 1) can be grouped into three
categories: linkage-, module-, and diffusion-based methods [14].
Linkage methods [15–17] work on genomic linkage intervals. If a
gene is in a disease linkage interval, then its protein products are
disease proteins. Interacting protein with a known disease protein is
considered as a disease candidate protein. Disease protein in a PPI
network tends to be associated with the same disease. The linkage
methods could not preserve their popularity in disease protein
prediction because now it is known that the most of the diseases are
results of complex interactions and it is inadequate to study solely
direct interactions with a disease protein [14, 18]. Module-based
methods are based on the hypothesis that proteins within the same
topological or functional module on a network are more likely to
be associated with the same disease [9, 18–20]. They are designed
to detect a subnetwork that contains most of the disease-associated
molecules (i.e., proteins/genes) in the interactome [14]. For this
aim, mostly protein interaction networks are exploited based on
the functional and/or topological similarities of the proteins. In
disease module discovery, solely neighborhood considerations such
as direct neighbors, shared neighborhood, and local shortest paths
have the risk of sticking to the local assessment, so they perform
better with the support of other biological information such as
phenotype similarities and functional evidence. One advantage of
direct neighbor-based methods is they rarely require parameter
tuning phase. Diffusion-based methods are designed to discover
the pathways that are closest to the known disease genes. They
count known disease proteins as seeds and diffuse along interac-
tome through random walks [14]. Since they consider the full
network topology besides the placement of the known disease
genes, they are dominant over module-based methods [14, 18,
21, 22]. Simply, their procedure is based on scoring the proteins
as farther ones from the known disease proteins getting a lower
score of being associated with the disease. Thus, diffusion-based
methods are very suitable for prioritizing candidate disease proteins
and widely used for this purpose.

However, it is known that PPI networks are noisy and incom-
plete [23, 24]. Apart from leveraging these networks, we should
also consider the features of proteins, such as their Gene Ontology
(GO) annotations and their subcellular compartments. Thus, we
propose to integrate keywords acquired from the Universal Protein
Resource (UniProt) database [25] into the PPI network. The
keywords consist of various biological aspects of the proteins such as

Metagraph Representations 213

Table 1
A summary of keywords from the UniProt database

Keyword category Examples

Biological process Apoptosis, cell cycle, cAMP biosynthesis

Cellular component Golgi apparatus, vacuole, cytoplasm

Coding sequence diversity Polymorphisms, RNA-editing, alternative splicing

Domain SH2 domain, Kelch repeat, transmembrane

Ligand cAMP, S-adenosyl-L-methionine, cGMP

Molecular function RNA-binding, protein kinase inhibitor, chromatin regulator

Posttranslational modification Phosphorylation, ubiquitination, acetylation

Technical term Allosteric enzyme, transposable element

domain, posttranslational modification, molecular function, coding
sequence diversity, etc. We sum them up in Table 1.

By means of this integration, we acquire the network charac-
teristics between proteins and associated keywords as well. In the
last decade, integration of additional biological concepts into a PPI
network has been widely studied [26–30]. However, to the best of
our knowledge, the keywords in UniProt database have not been
used for the integration before. Thus, we construct a heteroge-
neous network to identify candidate disease proteins. We name the
heterogeneous network as a PPI-Keyword (PPIK) network, which
consists of knowledge about not only protein interactions with
one another but also their functional and structural similarities.
We propose to identify disease proteins by means of metagraph
structures on PPIK network [31]. Apart from a traditional network
motif or subgraph, a metagraph is a graph structure which can
attain a topology of both proteins and their associated keywords on
the network. Each metagraph keeps information of heteronomous
biological layout between one or more proteins and keywords. We
can represent each protein in terms of metagraphs so that we are
able to identify its interactions with other proteins and associations
with keywords. Our key motive is that proteins with similar
functional duties or involving in the same metabolic pathway tend
to have similar metagraph representations. In other words, they
tend to share similar interaction patterns with other proteins and
be associated with the same keywords in a similar layout on the
PPIK network.

Consequently, we perform various supervised learning tech-
niques for the prediction of disease proteins based on their meta-
graph representations on three PPI databases, namely, IntAct [32],
STRING [33], and NCBI [34]. Finally, we observe the dominant

214 Sezin Kircali Ata et al.

performance of our proposed metagraph-based prediction model
over the diffusion-based and module-based baselines.

2 Materials

2.1 PPI-Keyword
(PPIK) Network

1. Keywords: To utilize the biological properties of individual
proteins, we extract the keywords associated with each protein
from the Universal Protein Resource (UniProt) database
[25]. These keywords are terms which describe the various
biological aspects of the proteins, as summarized in Table 1.

2. PPI network: Protein molecules are the products of genes.
They work in collaboration to perform duties and rarely act
alone. They have varying tasks within organisms, for example,
enzymes catalyze reactions or proteins such as insulin and
transmit a signal to other cells. To complete their tasks, they
interact with each other in a transient way or stable way.
Transient interactions carry out short-term actions such as
binding of transcription factors. Stable interactions include
the physically docking and forming a complex structure
of proteins. Moreover, the success of the interactions in a
cell depends on several circumstances such as cell type, cell
cycle phase and state, developmental stage, environmental
conditions, protein modifications (e.g., phosphorylation),
etc. In a protein-protein interaction (PPI) network, proteins
are represented with nodes and interactions are represented
with edges. Since these interactions are essential biological
processes, PPI networks are thus crucial for understanding
human interactome and metabolism [35]. Recently, PPI
networks have been widely explored for predicting protein
functions [36], drug targets [37], essential genes [5], func-
tion modules/protein complexes [38, 39], etc.

3. PPIK network: We enrich three PPI network databases,
IntAct [32], STRING [33], and NCBI Entrez Gene [34]
with keywords, to construct a PPI-Keyword (PPIK) net-
work. While integrating the keywords acquired from UniProt
database into PPI network databases, protein Id conversions
take place, and corresponding UniProt entries is tried to find.
If there is a match, then the keyword is associated with the
protein in the PPI network (see Note 2).

Formally, a PPIK network is an undirected graph G = (V,
E, l), such that V represents the set of nodes, E represents
the set of edges, and l is the label function on V. Note that
each node can be either a protein or a keyword. Let the label
function l : V → {protein, keyword} discriminate the node types.
Moreover, an edge can represent either the link between two
proteins or a protein and a keyword. The former represents the
mapped interactions between the two proteins, and the latter

Metagraph Representations 215

Fig. 1 Part of the PPIK network based on UniProt and IntAct databases

Table 2
Summary of the three PPIK networks

Disease proteins

Proteins All Breast cancer Keywords PPI edges PPIK edges

IntAct 13,063 2947 29 554 97,652 246,092

NCBI 15,951 3476 31 567 227,004 405,632

STRING 17,668 3539 29 567 3,912,853 4,107,335

represents the association between the protein and keyword.
This integration improves the reliability of the original noisy and
incomplete network. Protein-keyword associations may strengthen
useful protein-protein interactions. Furthermore, proteins with no
direct interactions can now become related through keywords.

Figure 1 illustrates a part of the constructed PPIK network
grounded on the UniProt and IntAct databases. Note that the
color scheme of the nodes essentially serves as the label function.

2.2 Disease
Genes

Disease labels for proteins are obtained using the UniProt and
OMIM databases. We first obtain disease genes from OMIM [40]
and further map these genes to their product proteins based on
UniProt.

Table 2 summarizes the three PPIK networks, and as we can
realize, the three PPIK networks are very different in terms of
number of proteins, number of PPI edges, as well as number of
PPIK edges.

3 Methods

The overall framework of the study is shown in Fig. 2.

216 Sezin Kircali Ata et al.

Fig. 2 General framework of the proposed method

Fig. 3 Example metagraphs: common structures of subgraphs on the PPIK network – (a) Example of 3-node
metagraph and (b) Example of 4-node metagraph

3.1 Metagraph
and Instances
of a Metagraph

In the PPIK network (Fig. 1), we notice multiple subgraphs with
a common structure, which are demonstrated in Fig. 3. More
precisely, Fig. 3a shows two three-node subgraphs of the PPIK
network, both with a common arrangement “protein-keyword-
protein.” Similarly, Fig. 3b illustrates two four-node subgraphs
with a common arrangement consisting of a triangle of three
proteins and one keyword. We call such common structures
metagraphs, and the corresponding subgraphs are their instances,
i.e., metagraph instances. Formally, a graph S = (VS, ES, l) is a
subgraph of graph G = (V, E, l) iff VS ⊆ V, ES ⊆ E. A graph
M = (VM, EM, lM) is a metagraph for some label function lM, where
each node is defined by its label and its value is immaterial. We say
that S is an instance of M iff; there exists a bijection w between the
nodes of S and M such that

• ∀v ∈ VS, l(v) = lM(w(v), and
• ∀v, u ∈ VS, (u, v) ∈ ES holds iff (w(v), w(u)) ∈ EMholds

Metagraph Representations 217

3.2 Mining
the Collection
of Metagraphs

From the constructed PPIK network, we extract the collection
of metagraphs M using the tool GRAMI [41] (see Note 3).
M � {M1, M2, . . . , M|M|} denotes the set of metagraphs in the PPIK
network obtained by GRAMI.

3.3 Metagraph
Representations
for Proteins

As a baseline, we extract keyword representation vector φ(p) = kp.
Given a set of keywords K, let kp be a vector of length |K|, for each
protein. It simply represents associated keywords with the protein
p where the i-th element is 1 iff the i-th keyword is associated
with protein p. We derive two different metagraph representations
for proteins from the mined metagraph set M by using SymISO
algorithm [31]:

1. Metagraph: Let I(Mi) be the set of instances of Mi ∈ M. A
protein p can be represented by a vector mp of length |M|,
where the i-th element is of Mi containing the protein p. That
is,

mp [i] � |{S ∈ I (Mi) : p ∈ VS}| (1)

The vector mp captures the topological arrangement on the
PPIK network for interactions between both proteins and key-
words. We boost the baseline keyword-based representation
with mp[i] and metagraph vector representation of protein p
is φ(p) = [kp, mp].

2. Metagraph+: Furthermore, the same metagraph can have mul-
tiple subgraph instances with different “utility” levels. For
example, a protein taking place in a subgraph together with
a disease protein is more likely to be a disease protein, which
implies that such subgraph instances have a higher utility toward
identifying disease proteins. As shown in Fig. 4, some subgraphs

Fig. 4 Example subgraph instances of a metagraph, where some contain disease proteins, and some do not
(Q9BRI3 is a known disease protein)

218 Sezin Kircali Ata et al.

contain disease proteins and some do not, based on biological
information from a disease database. To identify such utilities,
for each metagraph, we compute the fraction of its subgraph
instances containing any of the known disease proteins. The
label function ϕ : P → {disease, non - disease} discriminates
known disease proteins from other proteins. Let dp represent a
vector of length |M|. We define the i-th element of dp as follows:

dp [i] � |{S ∈I (Mi) :p ∈VS ∧ (∃v ∈ VS :v =p ∧ ϕ(v)=disease)}|
mp [i]

(2)

Consequently, we construct Metagraph+ vector representation
of protein p as, φ(p) = [mp, dp, kp] with (2|M| + K) dimensions.

3.4 Supervised
Learning

Based on the mined protein representations and training data, we
build a classifier through supervised learning. In our experiments,
we adopted three well-known classification models, namely, ran-
dom forest (RF), support vector machine (SVM), and generalized

linear model (GLM) (see Note 4). For each technique, we
divide the datasets into training and testing sets, containing 80%
and 20% proteins, respectively. The same set up is distinctly
repeated 5 times. Finally, for each dataset, we average over the
five splits. To evaluate the effectiveness of the proposed method,
we prefer the standard metric of area under the ROC curve
(AUC), which is a robust measure of the classifiers’ predictive
power on imbalanced data (e.g., breast cancer). AUC performance
result of the three representations in each of the classification
method, on each of the three datasets, for all diseases is presented
in Fig. 5. Averaging over all classifiers and datasets, Metagraph
improves AUC over Keyword by 12.6%. The results denote that
interactions/associations on the PPIK network are powerful for

Fig. 5 Performance of Metagraph and Metagraph+ compared to keywords for all disease on (a) IntAct,
(b) NCBI and (c) STRING

Metagraph Representations 219

Fig. 6 Performance of Metagraph and Metagraph+ compared to keywords for breast cancer on (a) IntAct,
(b) NCBI and (c) STRING

disease prediction, and proteins with similar functional roles tend
to exhibit similar topological arrangements. On the contrary, it
is inadequate to only consider keywords for individual proteins.
Second, the utility-based metagraph representation Metagraph+
further improves the performance.

The performance differences of Keyword, Metagraph, and
Metagraph+ for breast cancer are similar to those for all diseases,
as shown in Fig. 6.

3.5 Comparison
to Baselines

We conduct disease protein prediction for two different cases: first,
whether a protein is associated with all disease, i.e., all phenotypes
in OMIM, and second, whether a protein is particularly associated
with breast cancer, i.e., phenotype breast cancer. We compare our
proposed work to diffusion-based and module-based approaches
for protein disease prediction.

1. RWR or random walk with restart [42]: Consider a particle
on a PPI network which is initially at one of the known
disease proteins. Note that the initial position of the particle
has a uniform distribution over the disease proteins in the
training data. Next, in each step, the particle makes a move on
the network: either hopping to a randomly selected neighbor
with (1 − α) probability or returning to one of the disease
proteins in the training data with α probability which restarts
the random walk. The process is reiterated until it converges
to a stationary distribution over all the proteins. In the end,
candidate proteins in the test data are ordered according to
the stationary distribution. We used RANKS package in R for
the implementation. The α parameter is tuned over {0.1, 0.2,
. . . , 0.9} based on AUC performances.

2. RWRK : RWR performed on the PPIK network.
3. PRINCE [43]: Since we work on an unweighted PPI net-

work, this method basically performs random walk with restart
with only one major difference that is prior probabilities. In

220 Sezin Kircali Ata et al.

RWR, prior probabilities are uniformly distributed between
known disease-associated proteins. On the other hand, in
PRINCE prior probabilities are allotted to each disease-
associated protein based on a logistic function: L(x) = 1

1+e(cx+d)

and x = S(q, p) where S(q, p) is the similarity score between
query disease q and the associated disease p with the protein.
If the protein is associated with more than one disease then,
p is chosen to be the one with the closest score to q. We use
the suggested values as in paper [43] and set c to −15 and
d to log (9999). The similarity scores between phenotypes are
obtained from the study [44]. The α parameter is tuned over
{0.1, 0.2, . . . , 0.9} based on AUC performances as in RWR.

4. PRINCEK : PRINCE performed on the PPIK network.
5. Subgraph+: In this baseline, unlike metagraphs, we consider

subgraphs with only protein nodes, and their statistics and
utilities are formulated as protein representations similar to
the case of metagraphs (see Eqs. 1 and 2), which are then
concatenated with keyword representations for individual
proteins. We call this method Subgraph+, analogous to
Metagraph+. We leveraged Subgraph+ by different classifiers
with the same tuning routine as Metagraph and Metagraph+.

We compare the AUC performances of the baseline methods
with proposed Metagraph+, for all diseases and breast cancer
cases in Table 3. The utility-based metagraph representation,
Metagraph+, outperforms the baselines including the diffusion-
based methods (e.g., RWR) and the module-based methods by
13.8–32.9% for overall disease protein prediction. For predicting
breast cancer genes, it outperforms RWR, PRINCE, and the
module-based baselines by 6.6–14.2%.

3.6 Further
Analysis
of the Predicted
Disease Proteins

We further examine the disease proteins predicted by our proposed
methods, Metagraph and Metagraph+. Since GLM generally has
the best performance among the three classifiers, we only analyze
the results from this classifier. A test protein is considered as a
predicted disease protein if its prediction score is higher than 0.5.
Firstly, for each proposed method, we ran disease classification
on all three datasets (IntAct, NCBI, and STRING). Then, we
merge the predictions for all three datasets to construct a predicted
disease gene set for each method. We map our predicted disease
proteins to their producer gene Id’s using UniProt database. To
enable the analysis, DisGeNET database [45] is used to search
the PubMed Ids of the up-to-date publications reporting the
gene-disease associations. We demonstrate the average number of
existing publications per prediction that support our disease gene
predictions based on the proposed methods in Fig. 7. The results
are consistent with the AUC performance reported earlier, where
methods with higher average publications achieve higher AUC
scores.

Metagraph Representations 221

Table 3
Performance of Metagraph+ compared to random walk and subgraph
baselines

All disease Breast cancer

IntAct NCBI STRING IntAct NCBI STRING

RWR 0.551 0.567 0.622 0.578 0.665 0.605

RWRK 0.590 0.587 0.629 0.587 0.664 0.612

PRINCE – – – 0.506 0.716 0.632

PRINCEK – – – 0.634 0.717 0.596

Classifier: RF

Subgraph+ 0.745 0.756 0.826 0.611 0.696 0.713

Metagraph+ 0.886 0.862 0.916 0.820 0.748 0.796

Classifier: SVM

Subgraph+ 0.739 0.741 0.808 0.687 0.682 0.597

Metagraph+ 0.913 0.902 0.930 0.698 0.715 0.743

Classifier: GLM

Subgraph+ 0.751 0.758 0.818 0.733 0.715 0.796

Metagraph+ 0.918 0.921 0.937 0.748 0.734 0.819

200

150

Keywords (GLM)

Metagraph (GLM)

Metagraph+ (GLM)

100

50

A
ve

ra
ge

 #
 p

ub
lic

at
io

ns

0

Fig. 7 Average number of PubMed publications per prediction based on
DisGeNET

4 Notes

1. In this chapter, we focus on disease gene prediction. Since
the proteins are products of genes and we are using the
protein-protein interaction networks, disease genes and dis-
ease proteins are used interchangeably.

2. We only use the exact keywords, without evaluating the
semantic similarity or overlap between them. To verify the
use of exact keywords, we investigated the semantic similarity

222 Sezin Kircali Ata et al.

between pairs of keywords in UniProt database. There are 768
keywords associated with a Gene Ontology (GO) term, and
36 of them are associated with more than one GO terms. We
performed GO semantic analysis with GOSemSim package in
R to compare the similarity between these 768 GO terms.
The results show us only 326 pairs out of 294,528 (0.1%)
pairs have semantic similarity score greater than 0.5. Based on
the statistics, using exact match for the keywords is adequate
and reasonable.

3. Mining the metagraphs is an active research topic and various
solutions exist. We apply an existing state-of-the-art approach
GRAMI for this step. And only consider metagraphs up to five
nodes, which provide a good balance between efficiency and
accuracy (i.e., the number of instances grows exponentially).

4. Note that the main purpose of our study is to propose
the metagraph representations for the PPIK network, which
aims to improve the performance of the disease-causing pro-
tein prediction across various supervised learning techniques
including random forest, SVM, and generalized linear models.
For RF, we employed random forest package in R and tuned
the mtry parameter between 1 and the cardinality of protein
representation with tune RF function based on OOB error.
For SVM, we employed e1071 package in R and tuned
the gamma parameter over {10−5, 10−4, 0.001, 0.01, 0.1}
and the cost parameter over {0.1, 1, 10} with grid-based
tune.svm function (based on classification error). For GLM,
we employed stats package in R and adopted default Gaussian
distribution. Furthermore, in the case of breast cancer, the
classes are highly unbalanced. Therefore, we used the ROSE
package in R to oversample the breast cancer class (minority
class) with probability 0.2.

References

1. Nelson MR, Tipney H, Painter JL, Shen J,
Nicoletti P, Shen Y, Floratos A, Sham PC, Li
MJ, Wang J, Cardon LR, Whittaker JC, Sanseau
P (2015) The support of human genetic evi-
dence for approved drug indications. Nat Genet
47(8):856–860

2. Sekar A, Bialas AR, de Rivera H, Davis A, Ham-
mond TR, Kamitaki N, Tooley K, Presumey
J, Baum M, Van Doren V, Genovese G, Rose
SA, Handsaker RE, Consortium SWGotPG,
Daly MJ, Carroll MC, Stevens B, McCarroll
SA (2016) Schizophrenia risk from complex
variation of complement component 4. Nature
530(7589):177–183

3. Yang P, Li X, Chua H-N, Kwoh C-K, Ng
S-K (2014) Ensemble positive unlabeled learn-
ing for disease gene identification. PLoS One
9(5):1–11

4. Yang P, Li X-L, Mei J-P, Kwoh C-K,
Ng S-K (2012) Positive-unlabeled learning
for disease gene identification. Bioinformatics
28(20):2640

5. Li M, Lu Y, Wang J, Wu F-X, Pan Y (2015)
A topology potential-based method for iden-
tifying essential proteins from PPI networks.
IEEE/ACM Trans Comput Biol Bioinform
12(2):372–383

6. Fu L, Zhang S, Zhang L, Tong X, Zhang J,
Zhang Y, Ouyang L, Liu B, Huang J (2015)

Metagraph Representations 223

Systems biology network-based discovery of a
small molecule activator BL-AD008 targeting
AMPK/ZIPK and inducing apoptosis in cervi-
cal cancer. Oncotarget 6(10):8071–8088

7. Gui T, Dong X, Li R, Li Y, Wang Z (2015)
Identification of hepatocellular carcinoma-
related genes with a machine learning and
network analysis. J Comput Biol 22(1):63–71

8. Li X-L, Ng S-K (2009) Biological data mining
in protein interaction networks. IGI Global,
Hershey, PA

9. Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker
T (2007) Network-based classification of breast
cancer metastasis. Mol Syst Biol 3(1):140–n/a

10. Ideker T, Sharan R (2008) Protein networks in
disease. Genome Res 18(4):644–652

11. Xu J, Li Y (2006) Discovering disease-genes
by topological features in human protein–
protein interaction network. Bioinformatics
22(22):2800–2805

12. Yang P, Li X, Wu M, Kwoh C-K, Ng S-K
(2011) Inferring gene-phenotype associations
via global protein complex network propaga-
tion. PLoS One 6(7):1–11

13. Lage K, Karlberg EO, Storling ZM, Olason PI,
Pedersen AG, Rigina O, Hinsby AM, Tumer
Z, Pociot F, Tommerup N, Moreau Y, Brunak
S (2007) A human phenome-interactome net-
work of protein complexes implicated in genetic
disorders. Nat Biotech 25(3):309–316

14. Barabási A-L, Gulbahce N, Loscalzo J (2011)
Network medicine: a network-based approach
to human disease. Nat Rev Genet 12(1):56–68

15. Krauthammer M, Kaufmann CA, Gilliam TC,
Rzhetsky A (2004) Molecular triangulation:
bridging linkage and molecular-network infor-
mation for identifying candidate genes in
Alzheimer’s disease. Proc Natl Acad Sci U S A
101(42):15148–15153

16. Iossifov I, Zheng T, Baron M, Gilliam
TC, Rzhetsky A (2008) Genetic-linkage map-
ping of complex hereditary disorders to a
whole-genome molecular-interaction network.
Genome Res 18(7):1150–1162

17. Oti M, Snel B, Huynen MA, Brunner HG
(2006) Predicting disease genes using protein-
protein interactions. J Med Genet 43(8):691–
698

18. Navlakha S, Kingsford C (2010) The power
of protein interaction networks for associating
genes with diseases. Bioinformatics 26(8):1057

19. Suthram S, Dudley JT, Chiang AP, Chen
R, Hastie TJ, Butte AJ (2010) Network-
based elucidation of human disease similarities

reveals common functional modules enriched
for pluripotent drug targets. PLoS Comput Biol
6(2):1–10

20. Wu G, Stein L (2012) A network module-
based method for identifying cancer prognostic
signatures. Genome Biol 13(12):R112

21. Zhu J, Qin Y, Liu T, Wang J, Zheng X
(2013) Prioritization of candidate disease genes
by topological similarity between disease and
protein diffusion profiles. BMC Bioinformatics
14(5):S5

22. Shim JE, Hwang S, Lee I (2015) Pathway-
dependent effectiveness of network algorithms
for gene prioritization. PLoS One 10(6):1–10

23. Zhu L, Deng S-P, Huang D-S (2015) A two-
stage geometric method for pruning unreliable
links in protein-protein networks. IEEE Trans
Nanobioscience 14(5):528–534

24. Marcatili P, Tramontano A (2009) Network
cleansing: reliable interaction networks. In: Bio-
logical data mining in protein interaction net-
works. IGI Global, Hershey, PA, pp 80–97

25. Consortium U et al (2015) UniProt: a hub
for protein information. Nucleic Acids Res
43(Database issue):D204–D212

26. Liu W, Wu A, Pellegrini M, Wang X (2015)
Integrative analysis of human protein, function
and disease networks. Sci Rep 5:14344 EP

27. Singh-Blom UM, Natarajan N, Tewari A,
Woods JO, Dhillon IS, Marcotte EM (2013)
Prediction and validation of gene-disease associ-
ations using methods inspired by social network
analyses. PLoS One 8(5):1–17

28. Peng W, Wang J, Cai J, Chen L, Li M, Wu F-X
(2014) Improving protein function prediction
using domain and protein complexes in PPI
networks. BMC Syst Biol 8:35–35

29. Yang ZH, Yu FY, Lin HF, Wang J (2014)
Integrating PPI datasets with the PPI data
from biomedical literature for protein complex
detection. BMC Med Genet 7(Suppl 2):S3–S3

30. Sun K, Gonçalves JP, Larminie C, Pržulj N
(2014) Predicting disease associations via bio-
logical network analysis. BMC Bioinformatics
15(1):304

31. Fang Y, Lin W, Zheng VW, Wu M, Chang
KC-C, Li X (2016) Semantic proximity search
on graphs with metagraph-based learning. In:
32nd {IEEE} International Conference on Data
Engineering, {ICDE} 2016, Helsinki, Finland,
May 16–20, 2016. pp 277–288

32. Orchard S, Ammari M, Aranda B, Breuza L,
Briganti L, Broackes-Carter F, Campbell NH,
Chavali G, Chen C, del Toro N, Duesbury M,

224 Sezin Kircali Ata et al.

Dumousseau M, Galeota E, Hinz U, Iannuc-
celli M, Jagannathan S, Jimenez R, Khadake
J, Lagreid A, Licata L, Lovering RC, Mel-
dal B, Melidoni AN, Milagros M, Peluso D,
Perfetto L, Porras P, Raghunath A, Ricard-
Blum S, Roechert B, Stutz A, Tognolli M, van
Roey K, Cesareni G, Hermjakob H (2014) The
MIntAct project IntAct as a common curation
platform for 11 molecular interaction databases.
Nucleic Acids Res 42(Database issue):D358–
D363

33. Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J,
Simonovic M, Roth A, Santos A, Tsafou KP,
Kuhn M, Bork P, Jensen LJ, vonÂ Mering C
(2015) STRING v10: protein-protein interac-
tion networks, integrated over the tree of life.
Nucleic Acids Res 43(D1):D447

34. Maglott D, Ostell J, Pruitt KD, Tatusova T
(2007) Entrez Gene: gene-centered informa-
tion at NCBI. Nucleic Acids Res 35(Suppl
1):D26

35. De Las Rivas J, Fontanillo C (2010) Protein-
protein interactions essentials: key concepts to
building and analyzing interactome networks.
PLoS Comput Biol 6(6):e1000807

36. Chua HN, Sung W-K, Wong L (2006)
Exploiting indirect neighbours and topo-
logical weight to predict protein function
from protein-protein interactions. Bioinfor-
matics 22(13):1623–1630. https://doi.org/
10.1093/bioinformatics/btl145

37. Wu M, Yu Q, Li X-L, Zheng J, Huang J-
F, Kwoh C-K (2013) Benchmarking human
protein complexes to investigate drug-related
systems and evaluate predicted protein com-
plexes. PLoS One 8(2):e53197

38. Li X-L, Wu M, Kwoh C-K, Ng S-K (2010)
Computational approaches for detecting pro-
tein complexes from protein interaction net-
works: a survey. BMC Genomics 11(Suppl
1):S3

39. Wu M, Li X-L, Kwoh C-K, Ng S-K (2009) A
core-attachment based method to detect pro-
tein complexes in PPI networks. BMC Bioin-
formatics 10:169

40. Hamosh A, Scott AF, Amberger J, Bocchini
C, Valle D, McKusick VA (2002) Online
Mendelian Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic
disorders. Nucleic Acids Res 30(1):52

41. Elseidy M, Abdelhamid E, Skiadopoulos S, Kal-
nis P (2014) GraMi: frequent subgraph and
pattern mining in a single large graph. Proc
VLDB Endow 7(7):517–528

42. Köhler S, Bauer S, Horn D, Robinson PN
(2008) Walking the interactome for prioritiza-
tion of candidate disease genes. Am J Hum
Genet 82(4):949–958

43. Vanunu O, Magger O, Ruppin E, Shlomi T,
Sharan R (2010) Associating genes and protein
complexes with disease via network propaga-
tion. PLoS Comput Biol 6(1):1–9

44. van Driel MA, Bruggeman J, Vriend G, Brun-
ner HG, Leunissen JAM (2006) A text-mining
analysis of the human phenome. Eur J Hum
Genet 14(5):535–542

45. Piñero J, Bravo À, Queralt-Rosinach N,
Gutiérrez-Sacristán A, Deu-Pons J, Centeno E,
García-García J, Sanz F, Furlong LI (2017)
DisGeNET: a comprehensive platform integrat-
ing information on human disease-associated
genes and variants. Nucleic Acids Res 45(D1):
D833

http://dx.doi.org/10.1093/bioinformatics/btl145

Chapter 17

Inferring Antimicrobial Resistance from Pathogen Genomes
in KEGG

Minoru Kanehisa

Abstract

The KEGG database is widely used as a reference knowledge base for biological interpretation of genome
sequences and other high-throughput data. It contains, among others, KEGG pathway maps and BRITE
hierarchies (ontologies) representing high-level systemic functions of the cell and the organism. By the
processes called pathway mapping and BRITE mapping, information encoded in the genome, especially
the repertoire of genes, is converted to such high-level functional information. This general methodology
can be applied to microbial genomes to infer antimicrobial resistance (AMR), which is becoming an
increasingly serious threat to the global public health. Here we present how knowledge on AMR is
accumulated in the KEGG Pathogen resource and how such knowledge can be utilized by BlastKOALA
and other web tools.

Key words Beta-lactamase, KEGG Orthology (KO), KEGG module, Genome annotation,
BlastKOALA

1 Introduction

Antimicrobial resistance (AMR) is the ability of microbes to
become resistant to antimicrobial drugs. Since the availability of
first antibiotics in the 1940s, AMR has been a recurring prob-
lem every time a new drug is introduced. This reflects intrinsic
capacity of bacteria to adapt to environmental changes such as
by mutating genomic sequences and exchanging mobile genetic
elements. Furthermore, since antibiotics originate from natural
products, AMR may be viewed as a natural defense system in
the ecosystem. Although it may never be possible to overcome
the universal problem of AMR, characterizing such genomic and
genetic features will help understand molecular mechanisms of
AMR and better cope with this problem.

There are already several databases for AMR gene variants,
such as NCBI antimicrobial resistance reference gene database
[1], CARD (comprehensive antibiotic resistance database) [2] and

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6_17, © Springer Science+Business Media, LLC, part of Springer Nature 2018

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8561-6_17&domain=pdf
https://doi.org/10.1007/978-1-4939-8561-6_17

226 Minoru Kanehisa

BLDB (beta-lactamase database) [3], as well as Lahey Clinic beta-
lactamase nomenclature database [4], which is discontinued and
transferred to NCBI. We have also been developing a resource for
AMR in the KEGG (Kyoto Encyclopedia of Genes and Genomes)
database [5, 6].

KEGG (www.kegg.jp) is an integrated database resource con-
sisting of 18 main databases categorized into systems information
(PATHWAY, BRITE, and MODULE), genomic information (KO,
GENOME, GENES, and SSDB), chemical information (COM-
POUND, GLYCAN, REACTION, RCLASS, and ENZYME), and
health information (NETWORK, VARIANT, DISEASE, DRUG,
DGROUP, and ENVIRON). In addition to data-oriented entry
points to these databases, KEGG presents subject-oriented entry
points helping users of specific subject domains to navigate through
different databases. KEGG Pathogen is one of them, integrating
pathogen genomes, infectious diseases, and anti-infective drugs.
This paper describes datasets and tools available in the KEGG
Pathogen resource.

2 Materials

2.1 KEGG
Pathogen Resource

KEGG Pathogen (www.kegg.jp/kegg/genome/pathogen.html) is
an interface to pathogen genomes and infectious diseases in KEGG
for understanding molecular mechanisms of pathogenicity and
antimicrobial resistance (AMR) from genomic information. As
of October 2017, it consists of 25 pathway maps for infectious
diseases and 3 pathway maps for AMR in the PATHWAY database,
more than 300 infectious disease entries in the DISEASE database,
more than 1000 anti-infective drugs in the DRUG database, and
more than 1000 pathogen genomes in the GENOME and GENES
databases. All these contents are classified by BRITE hierarchy
or table files as shown in Table 1. As an example, Fig. 1 is
the pathway map for beta-lactam resistance (map 01501), which
indicates four main mechanisms for AMR: (i) altered target sites for
penicillin-binding proteins, (ii) enzymatic inactivation by mutated
beta-lactamases, (iii) decreased penetration by repression of porins,
and (iv) increased efflux by overexpression of efflux pumps.

The GENES database is a collection of gene catalogs for
completely sequenced genomes taken from the RefSeq and Gen-
Bank databases. They are given KEGG-original annotations in the
form of assigning KO (KEGG Orthology) identifiers, also called
K numbers, which represent gene/protein functional orthologs.
The KO database accumulates knowledge on molecular-level func-
tions in a generic way, namely, in terms of orthologs rather
than individual genes from specific organisms. In a similar way,
the PATHWAY, BRITE, and MODULE databases accumulate
knowledge on higher-level functions represented as generic (not

http://www.kegg.jp
http://www.kegg.jp/kegg/genome/pathogen.html

Inferring AMR from Pathogen Genomes 227

Table 1
KEGG Pathogen resource

Database Classificationa Content

PATHWAY Infectious diseases: Bacterial Disease pathways

Infectious diseases: Viral

Infectious diseases: Parasitic

Drug resistance: Antimicrobial (all in br08901)

Chronology: Anti-infectives (br08901) Drug structure maps

DISEASE Infectious diseases (br08401) Disease entries

Human diseases in ICD-10 classification (br08403)

DRUG Antibacterials (br08350) Drug entries

Antivirals (br08351)

Antifungals (br08352)

Antiparasitics (br08353)

GENOME Human pathogens (br08601_key) Microbes

GENES Bacterial toxins (ko02042) Genes

Antimicrobial resistance genes (ko01504)

Beta-lactamases (br01553)

Aminoglycoside resistance genes (br01554)

Tetracycline resistance genes (br01556)

Macrolide resistance genes (br01555)

Other resistance genes (br01557)

KO KEGG signatures (br01600) KOs

MODULE Signature module: Pathogenicity Gene sets

Signature module: Drug resistance (both in ko00002)
aBRITE hierarchy or table file identifiers are shown in parentheses

organism-specific) networks of molecular interactions, reactions,
and relations, where the nodes of all these networks are identified
by K numbers. Thus, once genes in the genome are annotated with
K numbers, they can automatically be matched with the network
nodes of KEGG pathway maps, BRITE functional hierarchies,
and KEGG modules, enabling KEGG mapping for interpretation
of higher-level functions. In the KEGG Pathogen resource, this
general procedure is applied to the specific problem of inferring
AMR from pathogen genome sequences by developing a special-
ized knowledge base consisting of AMR gene sequences, signature
KOs, and signature modules as described below.

228 Minoru Kanehisa

DNA

DNA

MecAMecIMecR1

BlaZBlaIBlaR1

beta-LACTAM RESISTANCE

DNA

AmpCAmpRAmpG
GlcNAc-
anhMurNAc
muropeptide

NagZ

1,6-Anhydro-
MurNAc-peptide

UDP-MurNAc-
pentapeptide

DAP-containing
peptide fragment

NagZ

γ-D-Glu-m-DAP

Penicillins

Cephalosporins
- parenteral agents

Cephalosporins
- oral agents

Peptidoglycan biosynthesis

PBP3

PBP1a/2

PBP1b

PBP2x

MecA

Penicillin binding proteins

OmpF

Class B

Class AClass C

Class D

β-Lactamases

β-Lactamase

β-Lactamase

Plasmid

Inner membraneOuter membrane

Peptidoglycan biosynthesis

Inhibition of
peptidoglycan biosynthesis
Increase of muropeptides

Conjugal transfer from
β-Lactam-resistant bacterium

Loss or severe reduction of porins

OmpC

DNA

MexA/AcrA

MexR

MexB/AcrB

MexR

ArmR

DNA

NalC

DNA

AcrR

AbcA

OprM/AdeK

OmpU

MexZ

ParR

DNA

MexX

MexY

OprDParS
+p

DNA

Colistin
Polymyxin B

(Cationic antimicrobial
peptides)

PA5471Protein synthesis inhibitorsPIB

OprD

DNA

NalD

AdeS
AdeA

AdeB

AdeC

Overexpression

AdeR

AdeN

DNA

PBP5

PBP2b

PBP2a

PBP2

RND

MFP

OMP

RND efflux pumps

PBP1

FtsI

β-Lactam

Opp

Hydrolytic degaradation

01501 5/12/18
(c) Kanehisa Laboratories

Fig. 1 The KEGG pathway map for beta-lactam resistance (map 01501)

2.2 AMR Gene
Sequences

In the past, the content of the GENES database was limited to
those genes present in completely sequenced genomes. Conse-
quently, the content of functional orthologs in the KO database
was also limited. In order to make the KO database more com-
prehensive, so that the KO-based annotation becomes more com-
prehensive, the addendum category has been introduced in the
GENES database [6]. It is a collection of individual protein
sequences of known functions based on published literature, from
which new KOs are defined. This non-genome category of GENES
is essential to organize knowledge on AMR gene variants, currently
for the following classes of antibiotics: beta-lactam, aminoglyco-
side, tetracycline, macrolide, phenicol, sulfonamide, trimethoprim,
quinolone, rifamycin, and fosfomycin.

Among them beta-lactam is the major class of antibiotics,
which is classified by the drug groups (DG numbers) of the KEGG
DGROUP database as shown in Table 2. Microorganisms that
are resistant to newer generation of beta-lactam antibiotics are the

Inferring AMR from Pathogen Genomes 229

main concern in global public health. They include carbapenem-
resistant Enterobacteriaceae, extended-spectrum beta-lactamase
(ESBL) producing Enterobacteriaceae, carbapenem-resistant
Acinetobacter, and carbapenem-resistant Pseudomonas aeruginosa
according to the threat levels of microorganisms defined by
CDC (Centers for Disease Control and Prevention in the USA)
and the priority pathogen list defined by WHO (World Health
Organization).

The major mechanism of AMR for beta-lactam antibiotics
involves the enzyme, beta-lactamase, that hydrolyzes the beta-
lactam ring and inactivates the drug. Microorganisms, especially
Gram-negative bacteria, have the ability to readily change substrate
specificity of this enzyme by mutated amino acid sequences.
Historically, beta-lactamases were first classified into class A and
class B for serine proteases and metalloproteases, respectively, and
class C and class D were later added to the serine protease group
[7]. In addition, enzyme family names have been given to closely
related enzyme sequences with numbering indicating instances of
variant sequences [4]. The number of beta-lactamase sequences
collected in KEGG (as of October 2017) is shown in Table 3.

2.3 Signature KOs The KO group represents a functional ortholog at the molecular
level, but the term function can be defined in varying degrees of
granularity. KOs are usually defined in the context of molecular
networks, namely, as nodes of KEGG pathway maps, BRITE hier-
archies, and KEGG modules. This definition has turned out to be
extremely useful to represent conserved functions among different
organisms, enabling reconstruction of molecular networks from
sequenced genomes. For AMR genes, meaningful functions must
be defined so that substrate specificity and other molecular details
can be distinguished, and the drug groups that organisms are
resistant to can be distinguished.

Thus, together with the addendum category of the GENES
database, we introduced the procedure to define finely classified
KOs, called tight KOs, in the KO database [6]. Currently, close
to 50% of about 25 million genes in the GENES database are
given KO annotation, which is done by both automatic and manual
modes of the KOALA (KEGG Orthology And Links Annotation)
system using the computationally generated sequence similarity
database SSDB. Tight KOs are manually defined using the GFIT
tool, which shows for a given gene of a given organism candidates
of orthologs in other organisms in the order of sequence similarity
scores. Tight KOs tend to appear as a group of often over 90%
sequence identity followed by less similar sequences with a wide
margin.

We also use the term signature KOs, for those KOs that
can be directly linked to phenotypes or other high-level features.
Tight KOs defined for beta-lactamases are all signature KOs

230 Minoru Kanehisa

Table 2
Beta-lactam antibiotics

Drug group Drug example Enzyme example

Beta-lactam
(DG01710)

Penicillin
skeleton
group
(DG01713)

Beta-lactamase-
sensitive penicillin
(DG01778)

Benzylpenicillin Penicillinase

Beta-lactamase-
resistant penicillin
(DG01779)

Meticillin Oxacillinase

Oxacillin

Extended-spectrum
penicillin
(DG01780)

Ampicillin

Carbenicillin

Beta-lactamase
inhibitor
(DG01479)

Sulbactam

Tazobactam

Clavulanic acid

Carbapenem
(DG01458)

Imipenem Carbapenemase
Imipenemase

Cephalosporin
skeleton
group
(DG01714)

First-generation
cephalosporin
(DG01774)

Cefaloridine Cephalosporinase

Second-generation
cephalosporin
(DG01775)

Cefoxitin Cephamycinase

Flomoxef

Loracarbef

Third-generation
cephalosporin
(DG01776)

Cefotaxime Extended-
spectrum

beta-lactamase
(ESBL)

Ceftazidime

Latamoxef

Fourth-generation
cephalosporin
(DG01777)

Cefepime

Monobactam
(DG01454)

Monobactam
(DG01454)

Aztreonam

Inferring AMR from Pathogen Genomes 231

Table 3
Collection of beta-lactamase sequences

Class Name Number of sequences Number of KOs

Serine A TEM 192 1

SHV 156 1

CTX-M 165 1

PER 8 1

VEB 15 1

BEL 3 1

KPC 22 1

GES 30 1

IMI 8 1

SME 5

CARB 40 3

D OXA 426 23

C CMY 129 2

CFE 1

LAT 1

MOX 11

DHA 21 1

FOX 12 1

ACC 5 1

ACT 37 1

MIR 18 1

ADC 37 1

PDC 10 1

Metallo B IMP 50 1

VIM 43 1

NDM 16 1

IND 16 1

GIM 2 1

Total 1479 48

232 Minoru Kanehisa

Table 4
Signature KOs of carbapenem-hydrolyzing beta-lactamases

Class Name KO Organism

A KPC K18768 Enterobacteriaceae, Pseudomonas, Acinetobacter

GES K18970 Enterobacteriaceae, Pseudomonas, Acinetobacter, Aeromonas

IMI K19316 Enterobacteriaceae

SME

D OXA-51 K18794 Acinetobacter

OXA-213 K19318 Acinetobacter

OXA-24 K18971 Acinetobacter

OXA-23 K18793 Klebsiella, Acinetobacter

OXA-134 K19319 Acinetobacter

OXA-211 K19320 Acinetobacter

OXA-214 K19321 Acinetobacter

OXA-229 K19322 Acinetobacter

OXA-58 K18972 Acinetobacter

OXA-62 K19211 Pandoraea

OXA-48 K18976 Enterobacteriaceae, Shewanella

B IMP K18782 Enterobacteriaceae, Pseudomonas, Acinetobacter, Aeromonas

VIM K18781 Enterobacteriaceae, Pseudomonas

NDM K18780 Enterobacteriaceae, Acinetobacter

IND K19099 Enterobacter, Pseudomonas

GIM K19216 Chryseobacterium

characterizing enzyme groups and in many cases AMR drug groups
as well. The number of signature KOs is shown in the last column
of Table 3 indicating that they well correspond to enzyme families
except OXA. In contrast to the other names based on sequence
similarity, OXA is used based on the activity on oxacillin and
related substrates and consists of a diverse set of sequence data
[8, 9]. Table 4 shows carbapenem-hydrolyzing beta-lactamases
(carbapenemases) including certain OXA subgroups. OXA-type
carbapenemases are found mostly in Acinetobacter, but OXA-48
is found in Enterobacteriaceae.

2.4 Signature
Modules

KEGG modules in the MODULE database are functional units
representing gene sets of functional relevance. Each module is
identified by the M number and defined by the set of K numbers
or more precisely by the logical expression of K numbers. For

Inferring AMR from Pathogen Genomes 233

example, a complex is defined using the AND (+) operator, and
alternative genes are defined using the OR (,) operator. This allows
automatic evaluation of whether the gene set for the functional
unit is complete in a given genome. It is often the case that the
functional units correspond to genomic units, such as operon-like
structures and plasmid-encoded gene sets. Several types of KEGG
modules are considered, including pathway modules representing
locally well-conserved units in metabolic pathways and signature
modules that can be used as markers of phenotypes.

We have been collecting signature modules for linking
microbial genomes to phenotypes, especially pathogenicity and
AMR. For example, the module M00363 is a signature module
for identifying pathogenic strains of EHEC (enterohemorrhagic
Escherichia coli) infection. It consists of Shiga toxin A and B
subunit genes. The module M00625 is a signature module
for methicillin resistance identifying MRSA (methicillin-resistant
Staphylococcus aureus) strains. Beta-lactam resistance in this case
is caused by altered target sites for penicillin-binding proteins.
In addition to mecA for resistant penicillin-binding protein, this
module contains mecR1for signal transducer protein and mecI for
repressor protein. They may be encoded in the mobile genetic
element SCCmec (staphylococcal cassette chromosome mec).
Figure 2 is the ortholog table for M00625 showing KEGG
organisms that possess all three genes (complete module) or
mecA/mecR1 genes (one block missing module) in the genome,
which are known MRSA strains.

Table 5 summarizes the number of signature KOs and sig-
nature modules currently defined in KEGG Pathogen. These
modules include the other types of resistance mechanisms, such
as activation of efflux pumps and repression of porins.

3 Methods

3.1 Phylogenetic
Tree

The KO assignment of protein-coding genes is based on com-
parisons of entire amino acid sequences as stored in the SSDB
database, which is different from domain-based (HMM-based)
assignments used in most other resources. KO grouping is more
closely related to phylogenetic trees generated from multiple
sequence alignments. This can be seen in the KEGG SeqData page
(www.kegg.jp/kegg/seq/) where phylogenetic trees are shown for
KEGG sequence data collections, including beta-lactamases (see
Note 1). All the sequence data in classes A, B, and C are assigned
well-defined KOs that correspond to branches of phylogenetic
trees, but OXA-type sequence data in class D are not fully divided
yet into KOs because of the diversity of sequence data.

KEGG Mapper (www.kegg.jp/kegg/mapper.html) is a collec-
tion of KEGG mapping tools against PATHWAY, BRITE, and

http://www.kegg.jp/kegg/seq
http://www.kegg.jp/kegg/mapper.html

234 Minoru Kanehisa

Fig. 2 Ortholog tables corresponding to the KEGG module for methicillin resistance (M00625), where (a)
complete modules and (b) one-block-missing modules are displayed

MODULE databases. It also contains the Draw Phylogram tool to
add the user’s sequenced data to a given set of GENES sequence
data and to generate a phylogenetic tree, from which possible KOs
can be inferred for the user’s data.

3.2 Taxonomic
Distribution

The ortholog table shown in Fig. 3 indicates whether genes for
given KOs are present in KEGG organisms (complete genomes
in KEGG) and also by coloring whether they are adjacent on the
chromosome. There is another tool called module table. It indi-

Inferring AMR from Pathogen Genomes 235

Table 5
Signature KOs and signature modules

Type Resistance genes/modules Number of signatures

Gene variants Beta-lactamase genes 48

(signature KOs)

Aminoglycoside resistance genes 39

Tetracycline resistance genes 11

Macrolide resistance genes 19

Phenicol resistance genes 8

Sulfonamide resistance genes 3

Trimethoprim resistance genes 6

Quinolone resistance genes 2

Rifamycin resistance genes 2

Fosfomycin resistance genes 5

Gene sets Beta-lactam resistance modules 3

(signature modules)

Vancomycin resistance modules 2

Tetracycline resistance module 1

CAMP resistance modules 4

Multidrug resistance modules 15

cates only the presence or absence of genes for given KOs or gene
sets for given modules, but it is more suitable for characterizing
taxonomic distributions of KOs or modules. Let us take the K
numbers in Table 4 and see how the organism information in the
last column can be obtained.

1. Access the KEGG Annotation page (www.kegg.jp/kegg/
annotation.html) and go to the section of Module Table.

2. Enter the K numbers of Table 4 into the text area (see
Note 2). You may copy and paste the entire text of Table 4,
and click on “Filter” to clean up the text and to display only
the K numbers.

3. Click on “Go” to display the module table, where pink cells
indicate the existence of these K numbers in the genomes of
KEGG organisms.

4. Change the display mode from “Organism” to “Species” and
then to “Genus” to simplify the view where the existence of
genes is displayed at the species and genus levels.

http://www.kegg.jp/kegg/annotation.html

236 Minoru Kanehisa

Fig. 3 Module table for the signature KOs of carbapenem-hydrolyzing beta-lactamases shown in Table 4

5. Click on the check box of “Include addendum” to add
GENES data of addendum (non-genome) category. This is
recommended because most AMR gene sequence data are
collected from published literature and stored in this category.

The resulting module table is shown in Table 3. The organism
group “B.GamE” stands for “Bacteria; Gammaproteobacteria -
Enterobacteria” in the KEGG Organisms hierarchy (www.kegg.jp/
brite/br08601), meaning Enterobacteriaceae.

3.3 Using
BlastKOALA
to Detect AMR

BlastKOALA [10] is a web server for automatic annotation of
genome sequences, assigning KOs to a given set of amino acid
sequences (see Note 3). This is a general server for any genome, but
it can also be used to detect AMR genes and modules in pathogen
genomes (see Note 4). Detailed steps of using BlastKOALA and
performing KEGG Mapper analysis are described in another paper
of this series [11]. Basically this server can be used as follows:

1. Access the BlastKOALA server (www.kegg.jp/blastkoala/).
Enter a query set of amino acid sequences in FASTA
format and select the database to be searched, such as
species_prokaryotes.

2. Enter your email address and click on the “Request for email
confirmation” button to upload query sequences and other
data.

3. Check your email and click on the link in the email from the
BlastKOALA server to submit your job.

4. You will receive another notification email when the job is
completed. Click on the link to access the result page.

5. The result page contains links for viewing and downloading
a list of KO assignments, as well as for performing KEGG
Mapper analysis.

6. In order to understand AMR, click on the KEGG Mapper
“Reconstruct Brite” link and look for relevant files in the
list, especially “ko01504 Antimicrobial resistance genes” and
“br01600 (table) Antimicrobial resistance: KEGG signatures.”

http://www.kegg.jp/brite/br08601
http://www.kegg.jp/blastkoala

Inferring AMR from Pathogen Genomes 237

Fig. 4 An example of BRITE table mapping. The genome sequence annotated by BlastKOALA is likely to
contain AMR genes as shown in the mapping result against BRITE table br01600 (partially shown)

7. If these files are present in the list, click on the link to examine
AMR genes and modules found in the query data.

Here Acinetobacter baumannii AB0057 (GenBank accession:
GCA_000021245.2), which is not incorporated in KEGG, is used
as an example. Over 50% of 3787 amino acid sequences were
annotated with KOs by the BlastKOALA server. The BRITE
mapping to ko01504 identified TEM, OXA-23, OXA-51 and ADC
beta-lactamases, and other AMR genes. Furthermore, as shown
in Fig. 4, the result of BRITE table mapping to br01600 helped
understand the CDC threat levels and resistant drug groups.

The other types of KEGG Mapper analysis, Reconstruct Path-
way and Reconstruct Module, may also be used to understand
AMR. For example, check the mapping result of “01501 beta-
Lactam resistance” to see how resistance pathways are recon-
structed. Check also both complete and incomplete modules for
drug resistance listed in the module reconstruction result.

4 Notes

1. There are two types of tree viewers in KEGG. One is the
phylogram viewer for phylogenetic trees generated from mul-
tiple sequence alignments. The other is the dendrogram viewer
showing similarity relationships generated from precomputed
scores in the SSDB database (www.kegg.jp/kegg/ssdb/).

http://www.kegg.jp/kegg/ssdb

238 Minoru Kanehisa

2. Module table is so named because it was originally developed
to check taxonomic distribution of KEGG modules. It can
now be used for KOs (K numbers) as well as for modules
(M numbers).

3. There are two variants of the BlastKOALA server. One is
the Annotate Sequence (www.kegg.jp/kegg/tool/annotate_
sequence.html) tool in KEGG Mapper, which runs interac-
tively by limiting the database to be searched. The other is
GhostKOALA (www.kegg.jp/ghostkoala/), which runs much
faster than BlastKOALA and is suitable for a large query
dataset such as metagenome sequences.

4. The KAAS [12] server available at the GenomeNet site
(www.genome.jp/tools/kaas/) is not recommended for
pathogen detection, because it does not incorporate newly
introduced GENES addendum category.

Acknowledgments

This work was partially supported by the National Bioscience
Database Center of the Japan Science and Technology Agency.
The computational resource for developing and servicing KEGG
is provided by the Bioinformatics Center, Institute for Chemical
Research, Kyoto University.

References

1. NCBI Resource Coordinators (2017)
Database resources of the National Center
for Biotechnology Information. Nucleic Acids
Res 45:D12–D17

2. Jia B, Raphenya AR, Alcock B, Waglechner
N, Guo P, Tsang KK, Lago BA, Dave BM,
Pereira S, Sharma AN, Doshi S, Courtot M,
Lo R, Williams LE, Frye JG, Elsayegh T, Sar-
dar D, Westman EL, Pawlowski AC, Johnson
TA, Brinkman FS, Wright GD, McArthur AG
(2017) CARD 2017: expansion and model-
centric curation of the comprehensive antibi-
otic resistance database. Nucleic Acids Res
45:D566–D573

3. Naas T, Oueslati S, Bonnin RA, Dabos ML,
Zavala A, Dortet L, Retailleau P, Iorga BI
(2017) Beta-lactamase database (BLDB) –
structure and function. J Enzyme Inhib Med
Chem 32:917–919

4. Bush K, Jacoby GA (2010) Updated func-
tional classification of beta-lactamases. Antimi-
crob Agents Chemother 54:969–976

5. Kanehisa M, Furumichi M, Tanabe M, Sato
Y, Morishima K (2017) KEGG: new perspec-
tives on genomes, pathways, diseases and drugs.
Nucleic Acids Res 45:D353–D361

6. Kanehisa M, Sato Y, Kawashima M, Furu-
michi M, Tanabe M (2016) KEGG as a refer-
ence resource for gene and protein annotation.
Nucleic Acids Res 44:D457–D462

7. Hall BG, Barlow M (2005) Revised Ambler
classification of beta-lactamases. J Antimicrob
Chemother 55:1050–1051

8. Evans B, Amyes SG (2014) OXA β-lactamases.
Clin Microbiol Rev 27:241–263

9. Périchon B, Goussard S, Walewski V, Kri-
zova L, Cerqueira G, Murphy C, Feldgar-
den M, Wortman J, Clermont D, Nemec A,
Courvalin P (2014) Identification of 50 class
D β-lactamases and 65 Acinetobacter-derived
cephalosporinases in Acinetobacter spp. Antimi-
crob Agents Chemother 58:936–949

10. Kanehisa M, Sato Y, Morishima K (2016)
BlastKOALA and GhostKOALA: KEGG tools

www.kegg.jp/kegg/tool/annotate_sequence.html
www.kegg.jp/kegg/tool/annotate_sequence.html
http://www.kegg.jp/ghostkoala
http://www.genome.jp/tools/kaas

Inferring AMR from Pathogen Genomes 239

for functional characterization of genome and
metagenome sequences. J Mol Biol 428:726–
731

11. Kanehisa M (2017) Enzyme annotation and
metabolic reconstruction using KEGG. Meth-
ods Mol Biol 1611:135–145

12. Moriya Y, Itoh M, Okuda S, Yoshizawa
A, Kanehisa M (2007) KAAS: an
automatic genome annotation and pathway
reconstruction server. Nucleic Acids Res 35:
W182–W185

INDEX

A

Abundance estimation . 2–6
Alignment

global . 136
multiple . 131–139
pairwise . 131, 136
read . 4–6
sequence . 131

multiple . 233, 237
tree . 131

multiple . 131–139
Antibiotic . 9, 225, 228–230
Antimicrobial

drug . 225
resistance (AMR) . 225–238

Array-based method . 51, 52
Assembly . 5

B

Background correction . 55
Bacterial strains . 1–6
Bayesian

analysis .38
network

dynamic . 164, 165, 169
Beta-lactamase 226, 227, 229–233, 235–237
Biclustering . 95
Binning . 9, 10, 15
Bisulfite sequencing . 38, 40, 41
Bonferroni correction . 59, 83, 84

C

Canonical correlation analysis
sparse . 190

Canonical correspondence analysis
sparse . 182–186, 190

Carbohydrate
alignment . 131
complex . 132

Cell development . 63
Chemical substructure 182, 184, 186–189, 191
Chemogenomics . 182

ChIP-seq, analysis . 65, 69, 71, 74, 79
Classification 9–34, 54, 66, 173, 186, 197, 211–222, 227

multi-label . 206
Classifier 15, 21, 28, 64, 65, 72, 182, 183, 186,

187, 189, 197, 205, 206, 218, 220, 221
CpG

hypomethylated . 54
methylated

differentially . 54, 56, 59, 60

D

DAG, see Directed acyclic graph
Data integration . 22
Data mining . 84
Deletion . 165, 172, 175
Differentially methylated region . 51–61
Directed acyclic graph (DAG) 113, 114, 117, 118, 125
Disease

gene .211–222
protein .212, 213, 215, 217–222

Distribution analysis . 21–34
DNA methylation . 51, 53
Drug

discovery . 195
side effect . 195
target interaction 181–191, 195–202

E

Elementary mode analysis . 148
Enrichment . 79

analysis . 96, 104, 127
gene . 96
gene function . 113–129
gene ontology (GO). 114, 115, 121–124

Epigenetic marker . 37
Epigenome-wide association study (EWAS) 51–61
Epistasis . 93
Epistatic interaction. .83, 89, 90
EWAS, see Epigenome-wide association study

F

False discovery rate (FDR) . 58
Family-wise error rate (FWER).58, 59, 83, 84

Hiroshi Mamitsuka (ed.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 1807,
https://doi.org/10.1007/978-1-4939-8561-6, © Springer Science+Business Media, LLC, part of Springer Nature 2018

241

https://doi.org/10.1007/978-1-4939-8561-6

242 DATA MINING FOR SYSTEMS BIOLOGY: METHODS AND PROTOCOLS
Index

Feature extraction 66, 165, 167, 173–174, 178,
182, 184, 189

Flux
analysis

metabolic .141–161
stoichiometric . 160

balance
analysis . 142–144

metabolic . 142–144
mode .142, 146, 158–161
sparse . 153–156

Frequent itemset mining . 95–110
FWER, see Family-wise error rate

G

Gene
expression 46, 63, 74, 84, 86, 87, 95, 97, 142,

144, 160, 161, 190
function

coherence . 113–129
similarity . 113–129

ontology (GO)
term 113–122, 124, 127, 128, 222

regulation . 64
set

network . 96–99, 104–109
Generative model . 37–48
Generative probabilistic model . 37–40
Genome

microbial . 22, 233
pathogen . 225–238
wide association study (GWAS) 84, 89

Genomic computing . 64
Glycan . 131–138

alignment . 131, 136
multiple . 131–139
pairwise . 131

Glycobiology. .132
G protein-coupled receptor (GPCR).182, 183
Graphical model . 165

H

Histone acetylation . 84
Hyperparameter . 47
Hypervariable region . 21

I

Insertion . 164, 165, 172, 175
Interactome . 212, 214

K

K-mer . 9–15, 19
Kullback-Leibler divergence . 3

L

Learning to rank (LTR) 195–197, 204, 205
Limitless Arity Multiple-testing

Procedure (LAMP) . 84–92

M

Machine learning . 10, 12–13, 181, 195
large-scale . 9–19

Marker gene . 1, 2
Markov Chain Monte Carlo (MCMC) sampling 3
Mass spectrometry . 125, 163

tandem . 163–179
Medical Subject Headings (MeSH).203–208

indexing . 203–208
Metabolic network . . 142, 143, 145–147, 150, 152, 153, 155,

160, 161
Metabolism 141, 143, 144, 146, 147, 214
Metadata . 24, 31, 32, 69, 71, 88
Metagenomics . 2, 9–19, 22, 24
Metagraph. .213, 216–222

representation . 211–222
Methylation

cytosine . 38, 47
differential . 46, 47, 57
DNA . 51, 53
histone . 72, 74, 714

Microbe . 225, 227
Microbial DNA . 9
Microbiology . 9
Microbiome. .22
Microorganism . 9, 228, 229
MicroRNA (miRNA) . 84
Mixture modelling . 2
Model inference. .40–41
Modification

cytosine . 38
DNA . 37–48
epigenetic . 37

Multidimensional scaling . 114, 122
Multiple testing correction . 83, 84, 94

N

Next-generation sequencing . 51
Nucleotides motif . 19

P

Peptide-spectrum match (PSM) 164–167, 171–176
Polypharmacology . 181
Prediction 12–18, 63–80, 114, 182, 183, 186,

195–197, 206, 208, 212–214, 219–222
Principal component 141–144, 146, 148, 152

analysis 141–147, 149–150, 152, 156, 159, 160

DATA MINING FOR SYSTEMS BIOLOGY: METHODS AND PROTOCOLS
Index

243

Probabilistic
inference . 164
method . 4, 5, 37–40, 164
modelling . 2

Protein
domain . 182–184, 186–189, 191
keyword association . 215
protein interaction (PPI)

keyword (PPIK) . 213–220, 222
network . 211, 212, 214, 219

representation . 218, 220
Proteomics . 163, 164

shotgun . 163, 164
PSM, see Peptide-spectrum match

Q

Quality control . 38, 41, 55
Quantile normalization . 55

R

Randomization test .52–61
Read

alignment . 4–6
classification. .12–13
sequencing . 2, 4
short . 2, 4

Recall .15, 17, 18, 79, 80
Reference

clustering . 2, 4–5
collection. .4–5
genome . 2, 5, 11–14, 18, 41, 46
sequence . 2–6

Ribosomal RNA (rRNA) 21–23, 28–31
RNA polymerase . 63
RNA-seq . 2, 3, 22, 28–31, 70

S

Semantic representation . 205
Short read sequencing . 2, 4
Single nucleotide polymorphism (SNP) 1, 2, 84, 89–94
Sparse modeling . 181–191
Sparsity 143, 146, 150, 154, 155, 159, 185, 189, 191

induced binary classifier (SIBC) 186–189, 191
Specificity . 79, 80, 229
Strain identification . 2, 4

T

Taxonomic
classification . 25
distribution .234–236, 238

Taxonomy. 9, 17, 22
Text categorization . 203
Transcription factor (TF)

binding site . 70, 72
complex . 64
interaction . 63–80
pair . 66, 69, 72, 79

V

Variational Bayes . 3
Viterbi

path . 165, 166, 172–176, 178, 179
score . 165

	Preface
	Contents
	Contributors
	1 Identifying Bacterial Strains from Sequencing Data
	1 Introduction
	2 Materials and Methods
	2.1 Overview
	2.2 Software
	2.3 Sequencing Data
	2.4 Reference Collection and Clustering
	2.5 Read Alignment and Abundance Estimation
	2.6 Example

	Acknowledgements

	2 MetaVW: Large-Scale Machine Learning for Metagenomics Sequence Classification
	1 Introduction
	2 Materials
	2.1 MetaVW: Metagenomics Reads Classification
	2.2 Third-Party Softwares
	2.3 Reference Genome Databases for Rank-Specific Applications
	2.4 Reference Genome Databases for Rank-Flexible Applications
	2.5 Utility Functions

	3 Methods
	3.1 Read Classification Model Using Machine Learning
	3.2 Use Vowpal Wabbit for Online Learning
	3.3 Generate Training Set
	3.4 Generate Validation Sets
	3.5 Rank-Specific Predictions
	3.6 Rank-Flexible Predictions
	3.7 Training a New VW Model

	4 Notes
	References

	3 Online Interactive Microbial Classification and Geospatial Distributional Analysis Using BioAtlas
	1 Introduction
	1.1 Brief Description of BioAtlas Data Integration

	2 Methods
	2.1 Browsing Geospatial Distributions of Prokaryota
	2.2 Browsing Surface-Specific Distributions
	2.3 Classifying 16s Ribosomal RNA Sequences (with Geospatial and Surface-Specific Mapped Distributions)

	3 Notes
	References

	4 Generative Models for Quantification of DNA Modifications
	1 Introduction
	2 Materials
	2.1 Bisulfite Sequencing
	2.2 A Generative Probabilistic Model of Bisulfite Sequencing-Based Assays
	2.3 Likelihood Model for Bisulfite Sequencing Data
	2.4 Model Inference

	3 Methods
	3.1 Quality Control of Sequencing Reads
	3.2 Reference Genome Specification and Index Building
	3.3 Sequence Read Mapping
	3.4 Bisulfite Conversion Frequency Extraction
	3.5 Input Preparation for Lux Analysis
	3.6 Running Lux
	3.7 Differential Methylation Detection

	4 Notes
	References

	5 DiMmer: Discovery of Differentially Methylated Regions in Epigenome-Wide Association Study (EWAS) Data
	1 Introduction
	2 DiMmer Methods and Workflow
	2.1 CpG Significance
	2.1.1 Study Design
	2.1.2 Input
	2.1.3 Pre-processing
	2.1.4 Permutation

	2.2 Differentially Methylated Regions

	References

	6 Implementing a Transcription Factor Interaction Prediction System Using the GenoMetric Query Language
	1 Motivation
	2 TICA Web Server
	2.1 Workflow
	2.2 Parameters
	2.3 Output
	2.4 Deployment

	3 Implementation
	3.1 Data Preprocessing
	3.2 Interaction Prediction Method
	3.3 Data Format

	4 Performance
	4.1 Materials
	4.2 Parameter Settings
	4.3 Performance Assessment
	4.3.1 Null Distribution Generation from ENCODE
	4.3.2 Analysis of Novel Data
	4.3.3 Accuracy

	5 Discussion
	References

	7 Multiple Testing Tool to Detect Combinatorial Effects in Biology
	1 Introduction
	2 LAMP
	2.1 Usage
	2.2 Input File Formats
	2.3 Output Format
	2.4 Post- processing
	2.5 Flower Diagrams
	2.6 Demonstrations
	2.6.1 Demonstration 1: Mann-Whitney U Test
	2.6.2 Demonstration 2: Fisher's Exact Test

	3 LAMPLINK
	3.1 Usage
	3.2 Input File Formats
	3.3 Output File Formats
	3.4 Demonstrations

	References

	8 SiBIC: A Tool for Generating a Network of Biclusters Captured by Maximal Frequent Itemset Mining
	1 Introduction
	2 Materials
	3 Methods
	3.1 Overview of SiBIC
	3.1.1 Enumerating Biclusters
	3.1.2 Merging Biclusters
	3.1.3 Gene Set Networks

	3.2 Web Service
	3.2.1 Expression Dataset
	3.2.2 Parameters
	3.2.3 Biclusters
	3.2.4 Gene Set Network Viewer

	4 Notes
	References

	9 Computing and Visualizing Gene Function Similarity and Coherence with NaviGO
	1 Introduction
	2 Materials
	3 Methods
	3.1 Overview of NaviGO
	3.2 Quantification and Visualization of GO Term Association and Similarity
	3.3 GO Enrichment Analysis
	3.4 Quantifying Functional Association of Proteins
	3.5 Downloading Source Codes

	4 Notes
	References

	10 Analyzing Glycan-Binding Profiles Using Weighted MultipleAlignment of Trees
	1 Introduction
	2 Materials
	2.1 Brief Background of Glycobiology
	2.2 Brief Background of Glycan Representations
	2.3 Glycan Databases*7pt
	2.3.1 KEGG GLYCAN Database
	2.3.2 Consortium for Functional Glycomics (CFG)
	2.3.3 Lectin Frontier Database: LfDB

	3 Methods
	3.1 MCAW Dynamic Programming Algorithm
	3.2 MCAW Tool

	4 Notes
	References

	11 Analysis of Fluxomic Experiments with Principal MetabolicFlux Mode Analysis
	1 Introduction
	1.1 Principal Component Analysis
	1.2 Flux Balance Analysis (FBA)
	1.3 Principal Metabolic Flux Mode Analysis (PMFA)
	1.3.1 Sparse Principal Metabolic Flux Mode Analysis
	1.3.2 Analysis of Metabolic Subsystems

	2 Materials
	2.1 Datasets*6pt
	2.1.1 Saccharomyces cerevisiae Experimental Case Study

	2.2 Scripts

	3 Finding Principal Flux Modes
	3.1 Data Centralization
	3.2 Principal Component Analysis
	3.3 Finding Principal Metabolic Fluxes with PMFA
	3.4 Finding Sparse Principal Metabolic Fluxes with SPMFA
	3.5 Deflating the Covariance Matrix
	3.6 Computing the Total Variance Captured by PMFs

	4 Further Guidelines
	4.1 Directionality Constraints in PMFA and SPMFA
	4.2 Finding Mean Flux Modes
	4.3 Analysis of Non-linear Trajectories
	4.4 Finding the Optimal Models
	4.5 Estimating Optimal Values for User-Defined Parameters
	4.6 PMFA on Expression Data

	5 Conclusion
	References

	12 Analyzing Tandem Mass Spectra Using the DRIP Toolkit: Training, Searching, and Post-Processing
	1 Introduction
	2 Methods
	2.1 Installation
	2.2 Pre-search Parameter Learning Using dripTrain
	2.3 DRIP Database Search
	2.3.1 Pre-search Database Digestion Using dripDigest
	2.3.2 Spectra Identification Using dripSearch

	2.4 Feature Extraction Using dripExtract
	2.5 Fine-Grained Analysis Tools
	2.5.1 Interactive Analysis Using Lorikeet

	3 Notes
	References

	13 Sparse Modeling to Analyze Drug–Target Interaction Networks
	1 Introduction
	2 Materials
	2.1 Drug–Target Interactions
	2.2 Descriptors of Target Proteins
	2.3 Descriptors of Drugs

	3 Methods
	3.1 Problem Setting
	3.2 Sparse Canonical Correspondence Analysis (SCCA)
	3.3 Sparsity-Induced Binary Classifiers (SIBCs)
	3.4 An Application

	4 Notes
	References

	14 DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank
	1 Introduction
	2 Materials
	3 Methods
	4 Usage
	4.1 New Drug
	4.2 New Target

	5 Notes
	References

	15 MeSHLabeler and DeepMeSH: Recent Progress in Large-ScaleMeSH Indexing
	1 Introduction
	2 Materials
	3 Methods
	4 Usage
	5 Notes
	References

	16 Disease Gene Classification with Metagraph Representations
	1 Introduction
	2 Materials
	2.1 PPI-Keyword (PPIK) Network
	2.2 Disease Genes

	3 Methods
	3.1 Metagraph and Instances of a Metagraph
	3.2 Mining the Collection of Metagraphs
	3.3 Metagraph Representations for Proteins
	3.4 Supervised Learning
	3.5 Comparison to Baselines
	3.6 Further Analysis of the Predicted Disease Proteins

	4 Notes
	References

	17 Inferring Antimicrobial Resistance from Pathogen Genomes in KEGG
	1 Introduction
	2 Materials
	2.1 KEGG Pathogen Resource
	2.2 AMR Gene Sequences
	2.3 Signature KOs
	2.4 Signature Modules

	3 Methods
	3.1 Phylogenetic Tree
	3.2 Taxonomic Distribution
	3.3 Using BlastKOALA to Detect AMR

	4 Notes
	References

	Index

